Department of Electronic and Electrical Engineering, Centre of Nanoscience & Nanotechnology , University of Bath , Bath BA2 7AY , U.K.
Department of Physics , SUPA, University of Strathclyde , Glasgow G4 0NG , U.K.
ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33441-33449. doi: 10.1021/acsami.8b10605. Epub 2018 Sep 18.
Three-dimensional core-shell nanostructures could resolve key problems existing in conventional planar deep UV light-emitting diode (LED) technology due to their high structural quality, high-quality nonpolar growth leading to a reduced quantum-confined Stark effect and their ability to improve light extraction. Currently, a major hurdle to their implementation in UV LEDs is the difficulty of growing such nanostructures from Al GaN materials with a bottom-up approach. In this paper, we report the successful fabrication of an AlN/Al GaN/AlN core-shell structure using an original hybrid top-down/bottom-up approach, thus representing a breakthrough in applying core-shell architecture to deep UV emission. Various AlN/Al GaN/AlN core-shell structures were grown on optimized AlN nanorod arrays. These were created using displacement Talbot lithography (DTL), a two-step dry-wet etching process, and optimized AlN metal organic vapor phase epitaxy regrowth conditions to achieve the facet recovery of straight and smooth AlN nonpolar facets, a necessary requirement for subsequent growth. Cathodoluminescence hyperspectral imaging of the emission characteristics revealed that 229 nm deep UV emission was achieved from the highly uniform array of core-shell AlN/Al GaN/AlN structures, which represents the shortest wavelength achieved so far with a core-shell architecture. This hybrid top-down/bottom-up approach represents a major advance for the fabrication of deep UV LEDs based on core-shell nanostructures.
三维核壳纳米结构由于其结构质量高、高质量的非极性生长导致量子限制斯塔克效应降低以及提高光提取的能力,可以解决传统平面深紫外发光二极管(LED)技术中存在的关键问题。目前,在 UV LEDs 中实现这一目标的主要障碍是难以采用自下而上的方法从 AlGaN 材料中生长这种纳米结构。在本文中,我们报告了使用原始的上下混合方法成功制造了 AlN/AlGaN/AlN 核壳结构,从而在深紫外发射中应用核壳结构方面取得了突破。各种 AlN/AlGaN/AlN 核壳结构在优化的 AlN 纳米棒阵列上生长。这些是通过位移泰伯光刻(DTL)、两步干湿蚀刻工艺以及优化的 AlN 金属有机气相外延再生长条件来创建的,以实现直的和光滑的 AlN 非极性面的面恢复,这是后续生长的必要条件。发射特性的阴极发光高光谱成像表明,从高度均匀的核壳 AlN/AlGaN/AlN 结构阵列中实现了 229nm 的深紫外发射,这是迄今为止采用核壳结构实现的最短波长。这种上下混合方法为基于核壳纳米结构的深紫外 LED 的制造提供了重大进展。