Suppr超能文献

特邀评论:孟德尔随机化中个体和全局水平的平行因果关系检测——平凡的异质性统计量能胜任这项工作吗?

Invited Commentary: Detecting Individual and Global Horizontal Pleiotropy in Mendelian Randomization-A Job for the Humble Heterogeneity Statistic?

机构信息

MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.

出版信息

Am J Epidemiol. 2018 Dec 1;187(12):2681-2685. doi: 10.1093/aje/kwy185.

Abstract

Mendelian randomization (MR) is gaining in recognition and popularity as a method for strengthening causal inference in epidemiology by utilizing genetic variants as instrumental variables. Concurrently with the explosion in empirical MR studies, there has been the steady production of new approaches for MR analysis. The recently proposed "global and individual tests for direct effects" (GLIDE) approach fits into a family of methods that aim to detect horizontal pleiotropy-at the individual single nucleotide polymorphism level and at the global level-and to adjust the analysis by removing outlying single nucleotide polymorphisms. In this commentary, we explain how existing methods can (and indeed are) being used to detect pleiotropy at the individual and global levels, although not explicitly using this terminology. By doing so, we show that the true comparator for GLIDE is not MR-Egger regression (as Dai et al., the authors of the accompanying article (Am J Epidemiol. 2018;187(12):2672-2680), claim) but rather the humble heterogeneity statistic.

摘要

孟德尔随机化(MR)作为一种利用遗传变异作为工具变量来加强流行病学因果推断的方法,越来越受到认可和欢迎。随着实证 MR 研究的爆炸式增长,MR 分析的新方法也在不断涌现。最近提出的“直接效应的全局和个体检验”(GLIDE)方法属于一类旨在检测个体单核苷酸多态性水平和全局水平的水平多效性的方法,并通过去除异常单核苷酸多态性来调整分析。在这篇评论中,我们解释了如何使用现有的方法(实际上已经在使用)来检测个体和全局水平的多效性,尽管没有明确使用这个术语。通过这样做,我们表明 GLIDE 的真正对照物不是 MR-Egger 回归(正如戴等人,即伴随文章的作者(Am J Epidemiol. 2018;187(12):2672-2680)所声称的),而是谦逊的异质性统计量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcf7/6269239/302d48984e10/kwy185f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验