MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.
Am J Epidemiol. 2018 Dec 1;187(12):2681-2685. doi: 10.1093/aje/kwy185.
Mendelian randomization (MR) is gaining in recognition and popularity as a method for strengthening causal inference in epidemiology by utilizing genetic variants as instrumental variables. Concurrently with the explosion in empirical MR studies, there has been the steady production of new approaches for MR analysis. The recently proposed "global and individual tests for direct effects" (GLIDE) approach fits into a family of methods that aim to detect horizontal pleiotropy-at the individual single nucleotide polymorphism level and at the global level-and to adjust the analysis by removing outlying single nucleotide polymorphisms. In this commentary, we explain how existing methods can (and indeed are) being used to detect pleiotropy at the individual and global levels, although not explicitly using this terminology. By doing so, we show that the true comparator for GLIDE is not MR-Egger regression (as Dai et al., the authors of the accompanying article (Am J Epidemiol. 2018;187(12):2672-2680), claim) but rather the humble heterogeneity statistic.
孟德尔随机化(MR)作为一种利用遗传变异作为工具变量来加强流行病学因果推断的方法,越来越受到认可和欢迎。随着实证 MR 研究的爆炸式增长,MR 分析的新方法也在不断涌现。最近提出的“直接效应的全局和个体检验”(GLIDE)方法属于一类旨在检测个体单核苷酸多态性水平和全局水平的水平多效性的方法,并通过去除异常单核苷酸多态性来调整分析。在这篇评论中,我们解释了如何使用现有的方法(实际上已经在使用)来检测个体和全局水平的多效性,尽管没有明确使用这个术语。通过这样做,我们表明 GLIDE 的真正对照物不是 MR-Egger 回归(正如戴等人,即伴随文章的作者(Am J Epidemiol. 2018;187(12):2672-2680)所声称的),而是谦逊的异质性统计量。