MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
Int J Epidemiol. 2018 Aug 1;47(4):1242-1254. doi: 10.1093/ije/dyy080.
A robust method for Mendelian randomization does not require all genetic variants to be valid instruments to give consistent estimates of a causal parameter. Several such methods have been developed, including a mode-based estimation method giving consistent estimates if a plurality of genetic variants are valid instruments; i.e. there is no larger subset of invalid instruments estimating the same causal parameter than the subset of valid instruments.
We here develop a model-averaging method that gives consistent estimates under the same 'plurality of valid instruments' assumption. The method considers a mixture distribution of estimates derived from each subset of genetic variants. The estimates are weighted such that subsets with more genetic variants receive more weight, unless variants in the subset have heterogeneous causal estimates, in which case that subset is severely down-weighted. The mode of this mixture distribution is the causal estimate. This heterogeneity-penalized model-averaging method has several technical advantages over the previously proposed mode-based estimation method.
The heterogeneity-penalized model-averaging method outperformed the mode-based estimation in terms of efficiency and outperformed other robust methods in terms of Type 1 error rate in an extensive simulation analysis. The proposed method suggests two distinct mechanisms by which inflammation affects coronary heart disease risk, with subsets of variants suggesting both positive and negative causal effects.
The heterogeneity-penalized model-averaging method is an additional robust method for Mendelian randomization with excellent theoretical and practical properties, and can reveal features in the data such as the presence of multiple causal mechanisms.
稳健的孟德尔随机化方法不需要所有遗传变异都作为有效的工具来一致估计因果参数。已经开发了几种这样的方法,包括基于模式的估计方法,如果多个遗传变异是有效的工具,则可以给出一致的估计值;也就是说,没有比有效工具子集估计相同因果参数的更大子集的无效工具。
我们在这里开发了一种模型平均方法,在相同的“多个有效工具”假设下给出一致的估计值。该方法考虑了从每个遗传变异子集得出的估计值的混合分布。这些估计值是加权的,具有更多遗传变异的子集获得更多的权重,除非子集中的变异具有异质的因果估计值,在这种情况下,该子集会受到严重的加权。这种混合分布的模式是因果估计值。与先前提出的基于模式的估计方法相比,这种具有异质性惩罚的模型平均方法具有几个技术优势。
在广泛的模拟分析中,异质性惩罚模型平均方法在效率方面优于基于模式的估计方法,在 1 型错误率方面优于其他稳健方法。该方法提示炎症影响冠心病风险的两种不同机制,变异子集提示因果效应的正负。
具有异质性惩罚的模型平均方法是孟德尔随机化的另一种稳健方法,具有优良的理论和实践特性,并且可以揭示数据中的特征,如存在多种因果机制。