Lee Jong-Won, Niraula Narayan P, Trinh Cong T
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA.
Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Metab Eng Commun. 2018 Jul 24;7:e00076. doi: 10.1016/j.mec.2018.e00076. eCollection 2018 Dec.
Alkenes are industrially important platform chemicals with broad applications. In this study, we report a direct microbial biosynthesis of terminal alkenes from fermentable sugars by harnessing a P450 fatty acid (FA) decarboxylase from (OleT). We first characterized OleT and demonstrated its in vitro HO-independent activities towards linear C10:0-C18:0 FAs, with higher activity for C16:0-C18:0 FAs. Next, we engineered a alkene biosynthesis pathway, consisting of OleT and an engineered thioesterase (TesA) with compatible substrate specificities, and introduced this pathway into for terminal alkene biosynthesis from glucose. The recombinant EcNN101 produced a total of 17.78 ± 0.63 mg/L odd-chain terminal alkenes, comprising of 0.9% ± 0.5% C11 alkene, 12.7% ± 2.2% C13 alkene, 82.7% ± 1.7% C15 alkene, and 3.7% ± 0.8% C17 alkene, and a yield of 0.87 ± 0.03 (mg/g) on glucose. To improve alkene production, we identified and overcame the electron transfer limitation in OleT, by introducing a two-component redox system, consisting of a putidaredoxin reductase (CamA) and a putidaredoxin (CamB) from into EcNN101, and demonstrated the alkene production increased ~2.8 fold. Finally, to better understand the substrate specificities of OleT observed, we employed protein modeling to illuminate the functional role of FA binding pocket.
烯烃是具有广泛应用的重要工业平台化学品。在本研究中,我们报道了通过利用来自(OleT)的P450脂肪酸(FA)脱羧酶,从可发酵糖直接进行微生物生物合成末端烯烃。我们首先对OleT进行了表征,并证明其对线性C10:0 - C18:0脂肪酸具有体外不依赖于HO的活性,对C16:0 - C18:0脂肪酸具有更高的活性。接下来,我们构建了一个烯烃生物合成途径,该途径由OleT和具有兼容底物特异性的工程化硫酯酶(TesA)组成,并将此途径引入大肠杆菌用于从葡萄糖生物合成末端烯烃。重组大肠杆菌EcNN101共产生了17.78±0.63mg/L的奇数链末端烯烃,其中包括0.9%±0.5%的C11烯烃、12.7%±2.2%的C13烯烃、82.7%±1.7%的C15烯烃和3.7%±0.8%的C17烯烃,在葡萄糖上的产率为0.87±0.03(mg/g)。为了提高烯烃产量,我们通过将来自恶臭假单胞菌的双组分氧化还原系统,即恶臭假单胞菌铁氧还蛋白还原酶(CamA)和恶臭假单胞菌铁氧还蛋白(CamB)引入EcNN101,识别并克服了OleT中的电子传递限制,并证明烯烃产量提高了约2.8倍。最后,为了更好地理解所观察到的OleT的底物特异性,我们采用蛋白质建模来阐明FA结合口袋的功能作用。