Suppr超能文献

调控振荡可变剪接的顺式作用元件的特征分析。

Characterization of cis-acting elements that control oscillating alternative splicing.

机构信息

a Laboratory of RNA Biochemistry , Freie Universität Berlin, Institute of Chemistry and Biochemistry , Berlin , Germany.

b Cluster of Excellence Macromolecular Complexes, Institute of Cell Biology and Neuroscience , Goethe University Frankfurt , Frankfurt am Main , Germany.

出版信息

RNA Biol. 2018;15(8):1081-1092. doi: 10.1080/15476286.2018.1502587. Epub 2018 Sep 10.

Abstract

Alternative splicing (AS) in response to changing external conditions often requires alterations in the ability of sequence-specific RNA-binding proteins to bind to cis-acting sequences in their target pre-mRNA. While daily oscillations in AS events have been described in several organisms, cis-acting sequences that control time of the day-dependent AS remain largely elusive. Here we define cis-regulatory RNA elements that control body-temperature driven rhythmic AS using the mouse U2af26 gene as a model system. We identify a complex network of cis-regulatory sequences that regulate AS of U2af26, and show that the activity of two enhancer elements is necessary for oscillating AS. A minigene comprising these U2af26 regions recapitulates rhythmic splicing of the endogenous gene, which is controlled through temperature-regulated SR protein phosphorylation. Mutagenesis of the minigene delineates the cis-acting enhancer element for SRSF2 within exon 6 to single nucleotide resolution and reveals that the combined activity of SRSF2 and SRSF7 is required for oscillating U2af26 AS. By combining RNA-Seq with an siRNA screen and individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP), we identify a complex network of SR proteins that globally controls temperature-dependent rhythmic AS, with the direction of splicing depending on the position of the cis-acting elements. Together, we provide detailed insights into the sequence requirements that allow trans-acting factors to generate daily rhythms in AS.

摘要

可变剪接(AS)是对外界环境变化的一种响应,通常需要改变序列特异性 RNA 结合蛋白与靶 pre-mRNA 中顺式作用序列结合的能力。虽然在几种生物体中已经描述了 AS 事件的日常波动,但控制时间依赖性 AS 的顺式作用序列在很大程度上仍难以捉摸。在这里,我们使用小鼠 U2af26 基因作为模型系统,定义了控制体温驱动的节律性 AS 的顺式调控 RNA 元件。我们鉴定出了一个复杂的顺式调控序列网络,这些序列调控 U2af26 的 AS,并且表明两个增强子元件的活性对于 AS 的振荡是必要的。包含这些 U2af26 区域的小基因能够重现内源性基因的节律性剪接,这是通过温度调节的 SR 蛋白磷酸化来控制的。对小基因的突变描绘了 SRSF2 在内含子 6 中的顺式作用增强子元件,分辨率达到单核苷酸水平,并揭示了 SRSF2 和 SRSF7 的联合活性对于 U2af26 AS 的振荡是必需的。通过将 RNA-Seq 与 siRNA 筛选和单核苷酸分辨率交联和免疫沉淀(iCLIP)相结合,我们鉴定出了一个由 SR 蛋白组成的复杂网络,该网络全局调控温度依赖性的节律性 AS,剪接的方向取决于顺式作用元件的位置。总之,我们提供了关于允许反式作用因子产生 AS 日常节律的序列要求的详细见解。

相似文献

3
8
Global regulation of alternative RNA splicing by the SR-rich protein RBM39.富含SR的蛋白质RBM39对可变RNA剪接的全局调控。
Biochim Biophys Acta. 2016 Aug;1859(8):1014-24. doi: 10.1016/j.bbagrm.2016.06.007. Epub 2016 Jun 21.

引用本文的文献

2
Temperature-controlled molecular switches in mammalian cells.哺乳动物细胞中的温度控制分子开关。
J Biol Chem. 2024 Nov;300(11):107865. doi: 10.1016/j.jbc.2024.107865. Epub 2024 Oct 5.
7
Transcription Regulation Through Nascent RNA Folding.通过新生 RNA 折叠进行转录调控。
J Mol Biol. 2021 Jul 9;433(14):166975. doi: 10.1016/j.jmb.2021.166975. Epub 2021 Apr 1.
8
The role of RNA processing and regulation in metastatic dormancy.RNA 加工和调控在转移休眠中的作用。
Semin Cancer Biol. 2022 Jan;78:23-34. doi: 10.1016/j.semcancer.2021.03.020. Epub 2021 Mar 26.
9
Alternative splicing and cancer: a systematic review.可变剪接与癌症:系统性综述。
Signal Transduct Target Ther. 2021 Feb 24;6(1):78. doi: 10.1038/s41392-021-00486-7.

本文引用的文献

2
3
The Relationship between Alternative Splicing and Proteomic Complexity.可变剪接与蛋白质组复杂性之间的关系。
Trends Biochem Sci. 2017 Jun;42(6):407-408. doi: 10.1016/j.tibs.2017.04.001. Epub 2017 May 5.
8
Alternative Splicing May Not Be the Key to Proteome Complexity.可变剪接可能并非蛋白质组复杂性的关键所在。
Trends Biochem Sci. 2017 Feb;42(2):98-110. doi: 10.1016/j.tibs.2016.08.008. Epub 2016 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验