Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35033 Marburg, Germany.
Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9085-E9094. doi: 10.1073/pnas.1807762115. Epub 2018 Sep 10.
Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function. In yeast, Nbp35 cooperates with the related Cfd1, which is evolutionary less conserved and is absent in plants. Here, we investigated the potential scaffold function of human CFD1 (NUBP2) in CFD1-depleted HeLa cells by measuring Fe-S enzyme activities or Fe incorporation into Fe-S target proteins. We show that CFD1, in complex with NBP35 (NUBP1), performs a crucial role in the maturation of all tested cytosolic and nuclear Fe-S proteins, including essential ones involved in protein translation and DNA maintenance. CFD1 also matures iron regulatory protein 1 and thus is critical for cellular iron homeostasis. To better understand the scaffold function of CFD1-NBP35, we resolved the crystal structure of holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 protein. Importantly, two ctCfd1 monomers coordinate a bridging [4Fe-4S] cluster via two conserved cysteine residues. The surface-exposed topology of the cluster is ideally suited for both de novo assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presumably associates with a pocket near the Cfd1 dimer interface formed by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaffold components during Fe-S cluster assembly and/or release.
真核生物中铁硫(Fe-S)蛋白的成熟需要在线粒体和细胞质中复杂的机器。最初,Fe-S 簇组装在专用支架蛋白上,然后转运到靶蛋白。在细胞质中 Fe-S 蛋白组装(CIA)机器中,保守的 P 环核苷三磷酸酶 Nbp35 具有支架功能。在酵母中,Nbp35 与相关的 Cfd1 合作,Cfd1 在进化上的保守性较低,在植物中不存在。在这里,我们通过测量 Fe-S 酶活性或 Fe 掺入 Fe-S 靶蛋白来研究 CFD1(NUBP2)耗尽的 HeLa 细胞中人类 CFD1 的潜在支架功能。我们表明,CFD1 与 NBP35(NUBP1)形成复合物,在所有测试的细胞质和核 Fe-S 蛋白的成熟中发挥关键作用,包括参与蛋白质翻译和 DNA 维持的必需蛋白。CFD1 还成熟铁调节蛋白 1,因此对细胞内铁稳态至关重要。为了更好地理解 CFD1-NBP35 的支架功能,我们解析了 holo-Cfd1(ctCfd1)的晶体结构,分辨率为 2.6-Å,作为模型 Cfd1 蛋白。重要的是,两个 ctCfd1 单体通过两个保守半胱氨酸残基协调桥接[4Fe-4S]簇。簇的暴露表面拓扑结构非常适合通过其他 CIA 因子介导的从头组装和易于转移到 Fe-S 脱辅基蛋白。ctCfd1 特异性与 ATP 相互作用,ATP 可能与由保守 Walker 基序形成的 Cfd1 二聚体界面附近的口袋结合。相比之下,ctNbp35 优先结合 GTP,这暗示了在 Fe-S 簇组装和/或释放过程中对两个真菌支架成分的差异调节。