Suppr超能文献

原位煤层中产氢细菌和产甲烷菌的多样性。

The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam.

作者信息

Su Xianbo, Zhao Weizhong, Xia Daping

机构信息

1School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000 China.

Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, 454000 Henan Province China.

出版信息

Biotechnol Biofuels. 2018 Sep 8;11:245. doi: 10.1186/s13068-018-1237-2. eCollection 2018.

Abstract

BACKGROUND

Biogenic and biogenic-thermogenic coalbed methane (CBM) are important energy reserves for unconventional natural gas. Thus, to investigate biogenic gas formation mechanisms, a series of fresh coal samples from several representative areas of China were analyzed to detect hydrogen-producing bacteria and methanogens in an in situ coal seam. Complete microbial DNA sequences were extracted from enrichment cultures grown on coal using the Miseq high-throughput sequencing technique to study the diversity of microbial communities. The species present and differences between the dominant hydrogen-producing bacteria and methanogens in the coal seam are then considered based on environmental factors.

RESULTS

Sequences in the Archaea domain were classified into four phyla and included members from , , , and . The Bacteria domain included members of the phyla: , , , , , , , , and The hydrogen-producing bacteria was dominated by the genera: , , , , and ; the methanogens included the genera: , , , , , , and

CONCLUSION

Traces of hydrogen-producing bacteria and methanogens were detected in both biogenic and non-biogenic CBM areas. The diversity and abundance of bacteria in the biogenic CBM areas are relatively higher than in the areas without biogenic CBM. The community structure and distribution characteristics depend on coal rank, trace metal elements, temperature, depth and groundwater dynamic conditions. Biogenic gas was mainly composed of hydrogen and methane, the difference and diversity were caused by microbe-specific fermentation of substrates; as well as by the environmental conditions. This discovery is a significant contribution to extreme microbiology, and thus lays the foundation for research on biogenic CBM.

摘要

背景

生物成因和生物热成因煤层气是非常规天然气的重要能源储备。因此,为了研究生物成因气的形成机制,对来自中国几个代表性地区的一系列新鲜煤样进行了分析,以检测原位煤层中的产氢细菌和产甲烷菌。使用Miseq高通量测序技术从在煤上生长的富集培养物中提取完整的微生物DNA序列,以研究微生物群落的多样性。然后根据环境因素考虑煤层中存在的物种以及主要产氢细菌和产甲烷菌之间的差异。

结果

古菌域中的序列被分为四个门,包括来自、、、和的成员。细菌域包括以下门的成员:、、、、、、、、和。产氢细菌以以下属为主:、、、、和;产甲烷菌包括以下属:、、、、、、和。

结论

在生物成因和非生物成因煤层气区域均检测到微量的产氢细菌和产甲烷菌。生物成因煤层气区域中细菌的多样性和丰度相对高于无生物成因煤层气的区域。群落结构和分布特征取决于煤阶、痕量金属元素、温度、深度和地下水动力条件。生物成因气主要由氢气和甲烷组成,其差异和多样性是由底物的微生物特异性发酵以及环境条件造成的。这一发现对极端微生物学有重大贡献,从而为生物成因煤层气的研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02df/6128992/724e540d5131/13068_2018_1237_Fig1_HTML.jpg

相似文献

1
The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam.
Biotechnol Biofuels. 2018 Sep 8;11:245. doi: 10.1186/s13068-018-1237-2. eCollection 2018.
2
A contribution of hydrogenotrophic methanogenesis to the biogenic coal bed methane reserves of Southern Qinshui Basin, China.
Appl Microbiol Biotechnol. 2014 Nov;98(21):9083-93. doi: 10.1007/s00253-014-5908-z. Epub 2014 Jul 11.
3
A Review of Biogenic Coalbed Methane Experimental Studies in China.
Microorganisms. 2023 Jan 24;11(2):304. doi: 10.3390/microorganisms11020304.
4
Culture-independent assessment of the indigenous microbial diversity of Raniganj coal bed methane block, Durgapur.
Front Microbiol. 2023 Sep 4;14:1233605. doi: 10.3389/fmicb.2023.1233605. eCollection 2023.
7
Potential of biogenic methane for pilot-scale fermentation ex situ with lump anthracite and the changes of methanogenic consortia.
J Ind Microbiol Biotechnol. 2018 Apr;45(4):229-237. doi: 10.1007/s10295-018-2023-7. Epub 2018 Feb 20.
8
Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China.
Appl Microbiol Biotechnol. 2012 Dec;96(6):1587-97. doi: 10.1007/s00253-012-3889-3.
9
Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation.
ISME J. 2019 Mar;13(3):632-650. doi: 10.1038/s41396-018-0296-5. Epub 2018 Oct 15.

引用本文的文献

1
Effects of nano valent iron size on two-phase anaerobic digestion of food and kitchen waste.
Bioprocess Biosyst Eng. 2025 Aug;48(8):1385-1398. doi: 10.1007/s00449-025-03184-8. Epub 2025 Jun 4.
2
Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.
Heliyon. 2024 Dec 12;11(1):e41126. doi: 10.1016/j.heliyon.2024.e41126. eCollection 2025 Jan 15.
4
Coal mining activities driving the changes in bacterial community.
Sci Rep. 2024 Oct 27;14(1):25615. doi: 10.1038/s41598-024-75590-z.
5
Evolution characteristics and molecular constraints of microbial communities during coal biogasification.
Bioprocess Biosyst Eng. 2024 Dec;47(12):2075-2089. doi: 10.1007/s00449-024-03086-1. Epub 2024 Sep 27.
6
New insights into the coal-associated methane architect: the ancient archaebacteria.
Arch Microbiol. 2024 Apr 25;206(5):234. doi: 10.1007/s00203-024-03961-1.
7
Selective trace elements significantly enhanced methane production in coal bed methane systems by stimulating microbial activity.
Microbiol Spectr. 2024 Feb 6;12(2):e0350823. doi: 10.1128/spectrum.03508-23. Epub 2024 Jan 18.
8
A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment.
Nat Microbiol. 2023 Nov;8(11):2170-2182. doi: 10.1038/s41564-023-01485-w. Epub 2023 Sep 25.
9
Insight into the effect of chemical structure for microbial lignite methanation.
Heliyon. 2023 Jul 16;9(8):e18352. doi: 10.1016/j.heliyon.2023.e18352. eCollection 2023 Aug.
10
Microbial Communities Affected by Hydraulic Fracturing and Environmental Factors within an In Situ Coal Reservoir.
Microorganisms. 2023 Jun 25;11(7):1657. doi: 10.3390/microorganisms11071657.

本文引用的文献

1
Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens.
Biotechnol Adv. 2018 May-Jun;36(3):707-720. doi: 10.1016/j.biotechadv.2017.12.003. Epub 2017 Dec 14.
3
Effect of different ammonia sources on aceticlastic and hydrogenotrophic methanogens.
Bioresour Technol. 2018 Feb;250:390-397. doi: 10.1016/j.biortech.2017.11.081. Epub 2017 Nov 24.
5
Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source.
Biotechnol Adv. 2018 Jan-Feb;36(1):150-167. doi: 10.1016/j.biotechadv.2017.10.004. Epub 2017 Oct 19.
6
Enhanced carboxylic acids production by decreasing hydrogen partial pressure during acidogenic fermentation of glucose.
Bioresour Technol. 2017 Dec;245(Pt A):44-51. doi: 10.1016/j.biortech.2017.08.152. Epub 2017 Aug 30.
7
High-throughput sequencing analysis of bacterial community spatiotemporal distribution in response to clogging in vertical flow constructed wetlands.
Bioresour Technol. 2018 Jan;248(Pt B):104-112. doi: 10.1016/j.biortech.2017.07.061. Epub 2017 Jul 14.
9
Piezo-tolerant natural gas-producing microbes under accumulating CO.
Biotechnol Biofuels. 2016 Nov 4;9:236. doi: 10.1186/s13068-016-0634-7. eCollection 2016.
10
High-throughput sequencing of microbial diversity in implant-associated infection.
Infect Genet Evol. 2016 Sep;43:307-11. doi: 10.1016/j.meegid.2016.06.006. Epub 2016 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验