Department of Physics , P.O. Box 871504, Tempe , Arizona 85287-1504 , United States.
Department of Physics and School of Molecular Sciences , Arizona State University , P.O. Box 871504, Tempe , Arizona 85287-1504 , United States.
J Phys Chem B. 2018 Oct 4;122(39):9119-9127. doi: 10.1021/acs.jpcb.8b06864. Epub 2018 Sep 25.
Proteins experience either pulling or repelling force from the gradient of an external electric field due to the effect known as dielectrophoresis (DEP). The susceptibility to the field gradient is traditionally calculated from the solution of the electrostatic boundary-value problem, which requires assigning a dielectric constant to the protein. This assignment is essential since the DEP susceptibility is proportional, in dielectric theories, to the Clausius-Mossotti factor, the sign of which is controlled by whether the protein dielectric constant is below (repelling) or above (pulling) the dielectric constant of water. The dielectric constant is not uniquely or even well-defined for a particle of molecular size and the Clausius-Mossotti factor is shown here to be inadequate for describing the dipolar response of the protein and hydration water. An alternative theory is developed from the standpoint of molecular properties of the protein solute and water solvent. The effective polarity of the protein molecule enters the theory in terms of the variance of its molecular dipole moment and its refractive index. Molecular dynamics (MD) simulations of the protein cytochrome c in solution are performed to calculate the dipolar susceptibilities entering the theory. We find that tumbling of the protein on the nanosecond time scale results in a positive DEP (pulling). The DEP susceptibility for cytochrome c acquired from MD simulations is 10-10 times higher than predicted by the Clausius-Mossotti factor. Nevertheless, this high DEP susceptibility is fully consistent with empirically confirmed Oncley's equation connecting the protein dipole to dielectric increments of protein solutions. For cytochrome c, high DEP susceptibilities calculated from MD are consistent with experimental dielectric data. We provide a general relation connecting the DEP susceptibility to the dielectric increment of solution.
蛋白质由于介电泳(DEP)的作用,会受到来自外电场梯度的拉力或斥力。传统上,通过求解静电边值问题来计算对场梯度的敏感性,这需要给蛋白质分配介电常数。这种分配是必不可少的,因为在介电理论中,DEP 敏感性与克劳修斯-莫索蒂因子成正比,其符号由蛋白质介电常数是否低于(排斥)或高于(吸引)水的介电常数控制。对于分子大小的粒子,介电常数不是唯一的,甚至没有明确定义,克劳修斯-莫索蒂因子在这里被证明不足以描述蛋白质和水合水的偶极响应。本文从蛋白质溶质和水溶剂的分子特性的角度出发,提出了一种替代理论。蛋白质分子的有效极性以其分子偶极矩和折射率的方差的形式进入理论。对溶液中的蛋白质细胞色素 c 进行分子动力学(MD)模拟,以计算进入理论的偶极子磁化率。我们发现,蛋白质在纳秒时间尺度上的翻滚导致正介电泳(吸引)。从 MD 模拟中获得的细胞色素 c 的 DEP 磁化率比克劳修斯-莫索蒂因子预测的高出 10-10 倍。尽管如此,这种高 DEP 磁化率与经验证实的 Oncley 方程完全一致,该方程将蛋白质偶极与蛋白质溶液的介电增量联系起来。对于细胞色素 c,从 MD 计算得出的高 DEP 磁化率与实验介电数据一致。我们提供了一个将 DEP 磁化率与溶液介电增量联系起来的一般关系。