Suppr超能文献

药物基因组学中的深度学习:从基因调控到患者分层

Deep learning in pharmacogenomics: from gene regulation to patient stratification.

作者信息

Kalinin Alexandr A, Higgins Gerald A, Reamaroon Narathip, Soroushmehr Sayedmohammadreza, Allyn-Feuer Ari, Dinov Ivo D, Najarian Kayvan, Athey Brian D

机构信息

Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

Statistics Online Computational Resource (SOCR), University of Michigan School of Nursing, Ann Arbor, MI 48109, USA.

出版信息

Pharmacogenomics. 2018 May;19(7):629-650. doi: 10.2217/pgs-2018-0008. Epub 2018 Apr 26.

Abstract

This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates a family of machine learning algorithms that has transformed many important subfields of artificial intelligence over the last decade, and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical and demographic datasets.

摘要

本观点文章提供了深度学习在药物基因组学中当前和未来应用的实例,包括:识别位于基因组非编码区域的新型调控变异及其在药物表观基因组学中的作用;从医疗记录中进行患者分层;以及药物反应、靶点及其相互作用的机制预测。深度学习涵盖了一系列机器学习算法,在过去十年中改变了人工智能的许多重要子领域,并在生物医学的广泛任务中展现出突破性的性能提升。我们预计,未来深度学习将广泛用于预测个性化药物反应,并利用从大型复杂的分子、流行病学、临床和人口统计学数据集中提取的知识优化药物选择和剂量。

相似文献

1
Deep learning in pharmacogenomics: from gene regulation to patient stratification.
Pharmacogenomics. 2018 May;19(7):629-650. doi: 10.2217/pgs-2018-0008. Epub 2018 Apr 26.
3
Applications of deep learning for the analysis of medical data.
Arch Pharm Res. 2019 Jun;42(6):492-504. doi: 10.1007/s12272-019-01162-9. Epub 2019 May 28.
4
Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
Methods Mol Biol. 2021;2190:167-184. doi: 10.1007/978-1-0716-0826-5_7.
5
Deep learning in cancer diagnosis, prognosis and treatment selection.
Genome Med. 2021 Sep 27;13(1):152. doi: 10.1186/s13073-021-00968-x.
6
The applications of deep learning algorithms on in silico druggable proteins identification.
J Adv Res. 2022 Nov;41:219-231. doi: 10.1016/j.jare.2022.01.009. Epub 2022 Jan 22.
7
Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review.
Neurosurg Rev. 2020 Oct;43(5):1235-1253. doi: 10.1007/s10143-019-01163-8. Epub 2019 Aug 17.
8
Recent Progress of Deep Learning in Drug Discovery.
Curr Pharm Des. 2021;27(17):2088-2096. doi: 10.2174/1381612827666210129123231.
9
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
Artif Intell Med. 2019 Jul;98:59-76. doi: 10.1016/j.artmed.2019.07.008. Epub 2019 Jul 25.

引用本文的文献

1
Machine-Learning-Aided Advanced Electrochemical Biosensors.
Adv Mater. 2025 Aug;37(33):e2417520. doi: 10.1002/adma.202417520. Epub 2025 Jun 9.
2
Recent advances in applications of machine learning in cervical cancer research: a focus on prediction models.
Obstet Gynecol Sci. 2025 Jul;68(4):247-259. doi: 10.5468/ogs.25041. Epub 2025 May 29.
4
Epigenomics and the Brain-gut Axis: Impact of Adverse Childhood Experiences and Therapeutic Challenges.
J Transl Gastroenterol. 2024 Jun;2(2):125-130. doi: 10.14218/JTG.2024.00017. Epub 2024 Jun 28.
5
Artificial intelligence, medications, pharmacogenomics, and ethics.
Pharmacogenomics. 2024;25(14-15):611-622. doi: 10.1080/14622416.2024.2428587. Epub 2024 Nov 15.
6
Pharmacogenomics and Big Data in medical oncology: developments and challenges.
Ther Adv Med Oncol. 2024 Oct 18;16:17588359241287658. doi: 10.1177/17588359241287658. eCollection 2024.
7
The Role of Artificial Intelligence in the Diagnosis of Melanoma.
Cureus. 2024 Sep 20;16(9):e69818. doi: 10.7759/cureus.69818. eCollection 2024 Sep.
8
Revealing neural dynamical structure of with deep learning.
iScience. 2024 Apr 17;27(5):109759. doi: 10.1016/j.isci.2024.109759. eCollection 2024 May 17.
9
10
PorcineAI-Enhancer: Prediction of Pig Enhancer Sequences Using Convolutional Neural Networks.
Animals (Basel). 2023 Sep 15;13(18):2935. doi: 10.3390/ani13182935.

本文引用的文献

1
Predicting enhancer-promoter interaction from genomic sequence with deep neural networks.
Quant Biol. 2019 Jun;7(2):122-137. doi: 10.1007/s40484-019-0154-0.
3
Improving palliative care with deep learning.
BMC Med Inform Decis Mak. 2018 Dec 12;18(Suppl 4):122. doi: 10.1186/s12911-018-0677-8.
4
Hypothesis: Caco-2 cell rotational 3D mechanogenomic turing patterns have clinical implications to colon crypts.
J Cell Mol Med. 2018 Dec;22(12):6380-6385. doi: 10.1111/jcmm.13853. Epub 2018 Sep 25.
5
A universal SNP and small-indel variant caller using deep neural networks.
Nat Biotechnol. 2018 Nov;36(10):983-987. doi: 10.1038/nbt.4235. Epub 2018 Sep 24.
6
Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis.
IEEE J Biomed Health Inform. 2018 Sep;22(5):1589-1604. doi: 10.1109/JBHI.2017.2767063. Epub 2017 Oct 27.
8
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.
Proc 2nd Workshop Hum Loop Data Anal (2017). 2017 Apr;2017. doi: 10.1145/3077257.3077262.
9
MoleculeNet: a benchmark for molecular machine learning.
Chem Sci. 2017 Oct 31;9(2):513-530. doi: 10.1039/c7sc02664a. eCollection 2018 Jan 14.
10
Opportunities and obstacles for deep learning in biology and medicine.
J R Soc Interface. 2018 Apr;15(141). doi: 10.1098/rsif.2017.0387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验