Suppr超能文献

利用集成分类器和混合特征从序列信息预测抗结核肽

Prediction of Antitubercular Peptides From Sequence Information Using Ensemble Classifier and Hybrid Features.

作者信息

Usmani Salman Sadullah, Bhalla Sherry, Raghava Gajendra P S

机构信息

Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.

Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India.

出版信息

Front Pharmacol. 2018 Aug 28;9:954. doi: 10.3389/fphar.2018.00954. eCollection 2018.

Abstract

Tuberculosis is one of the leading cause of death worldwide, particularly due to evolution of drug resistant strains. Antitubercular peptides may provide an alternate approach to combat antibiotic tolerance. Sequence analysis reveals that certain residues (e.g., Lysine, Arginine, Leucine, Tryptophan) are more prevalent in antitubercular peptides. This study describes the models developed for predicting antitubercular peptides by using sequence features of the peptides. We have developed support vector machine based models using different sequence features like amino acid composition, binary profile of terminus residues, dipeptide composition. Our ensemble classifiers that combines models based on amino acid composition and N5C5 binary pattern, achieves highest Acc of 73.20% with 0.80 AUROC on our main dataset. Similarly, the ensemble classifier achieved maximum Acc 75.62% with 0.83 AUROC on secondary dataset. Beside this, hybrid model achieves Acc of 75.87 and 78.54% with 0.83 and 0.86 AUROC on main and secondary dataset, respectively. In order to facilitate scientific community in designing of antitubercular peptides, we implement above models in a user friendly webserver (http://webs.iiitd.edu.in/raghava/antitbpred/).

摘要

结核病是全球主要死因之一,尤其是由于耐药菌株的演变。抗结核肽可能提供一种对抗抗生素耐受性的替代方法。序列分析表明,某些残基(如赖氨酸、精氨酸、亮氨酸、色氨酸)在抗结核肽中更为普遍。本研究描述了利用肽的序列特征开发的预测抗结核肽的模型。我们利用氨基酸组成、末端残基的二元谱、二肽组成等不同序列特征开发了基于支持向量机的模型。我们基于氨基酸组成和N5C5二元模式的集成分类器在我们的主要数据集上实现了73.20%的最高准确率和0.80的曲线下面积(AUROC)。同样,该集成分类器在次要数据集上实现了75.62%的最大准确率和0.83的AUROC。除此之外,混合模型在主要和次要数据集上分别实现了75.87%和78.54%的准确率以及0.83和0.86的AUROC。为了方便科学界设计抗结核肽,我们在一个用户友好的网络服务器(http://webs.iiitd.edu.in/raghava/antitbpred/)中实现了上述模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b4/6121089/6c11d3e1163b/fphar-09-00954-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验