Suppr超能文献

模拟研究表明,兴奋性恢复缓慢会增加心室颤动风险。

Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation.

作者信息

Lawson Brodie A, Burrage Kevin, Burrage Pamela, Drovandi Christopher C, Bueno-Orovio Alfonso

机构信息

ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.

Department of Computer Science, University of Oxford, Oxford, United Kingdom.

出版信息

Front Physiol. 2018 Aug 28;9:1114. doi: 10.3389/fphys.2018.01114. eCollection 2018.

Abstract

Rotor stability and meandering are key mechanisms determining and sustaining cardiac fibrillation, with important implications for anti-arrhythmic drug development. However, little is yet known on how rotor dynamics are modulated by variability in cellular electrophysiology, particularly on kinetic properties of ion channel recovery. We propose a novel emulation approach, based on Gaussian process regression augmented with machine learning, for data enrichment, automatic detection, classification, and analysis of re-entrant biomarkers in cardiac tissue. More than 5,000 monodomain simulations of long-lasting arrhythmic episodes with Fenton-Karma ionic dynamics, further enriched by emulation to 80 million electrophysiological scenarios, were conducted to investigate the role of variability in ion channel densities and kinetics in modulating rotor-driven arrhythmic behavior. Our methods predicted the class of excitation behavior with classification accuracy up to 96%, and emulation effectively predicted frequency, stability, and spatial biomarkers of functional re-entry. We demonstrate that the excitation wavelength interpretation of re-entrant behavior hides critical information about rotor persistence and devolution into fibrillation. In particular, whereas action potential duration directly modulates rotor frequency and meandering, critical windows of excitability are identified as the main determinants of breakup. Further novel electrophysiological insights of particular relevance for ventricular arrhythmias arise from our multivariate analysis, including the role of incomplete activation of slow inward currents in mediating tissue rate-dependence and dispersion of repolarization, and the emergence of slow recovery of excitability as a significant promoter of this mechanism of dispersion and increased arrhythmic risk. Our results mechanistically explain pro-arrhythmic effects of class Ic anti-arrhythmics in the ventricles despite their established role in the pharmacological management of atrial fibrillation. This is mediated by their slow recovery of excitability mode of action, promoting incomplete activation of slow inward currents and therefore increased dispersion of repolarization, given the larger influence of these currents in modulating the action potential in the ventricles compared to the atria. These results exemplify the potential of emulation techniques in elucidating novel mechanisms of arrhythmia and further application to cardiac electrophysiology.

摘要

转子稳定性和蜿蜒运动是决定和维持心脏颤动的关键机制,对抗心律失常药物的研发具有重要意义。然而,关于细胞电生理变异性如何调节转子动力学,尤其是离子通道恢复的动力学特性,目前所知甚少。我们提出了一种基于高斯过程回归并辅以机器学习的新型仿真方法,用于心脏组织中折返生物标志物的数据丰富、自动检测、分类和分析。我们进行了超过5000次具有Fenton-Karma离子动力学的持续性心律失常发作的单域模拟,并通过仿真进一步丰富到8000万个电生理场景,以研究离子通道密度和动力学变异性在调节转子驱动的心律失常行为中的作用。我们的方法预测兴奋行为类别的分类准确率高达96%,并且仿真有效地预测了功能性折返的频率、稳定性和空间生物标志物。我们证明,折返行为的兴奋波长解释隐藏了有关转子持续性和演变为颤动的关键信息。特别是,虽然动作电位持续时间直接调节转子频率和蜿蜒运动,但兴奋性关键窗口被确定为解体的主要决定因素。我们的多变量分析得出了与室性心律失常特别相关的进一步新颖电生理见解,包括缓慢内向电流的不完全激活在介导组织速率依赖性和复极离散中的作用,以及兴奋性缓慢恢复作为这种离散机制和心律失常风险增加重要促进因素的出现。我们的结果从机制上解释了Ic类抗心律失常药物在心室中的促心律失常作用,尽管它们在房颤的药物治疗中已确立作用。这是由它们缓慢的兴奋性恢复作用模式介导的,促进了缓慢内向电流的不完全激活,因此增加了复极离散,因为与心房相比,这些电流在调节心室动作电位方面具有更大影响。这些结果例证了仿真技术在阐明心律失常新机制以及进一步应用于心脏电生理学方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca4/6121112/99bccc9c1274/fphys-09-01114-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验