Suppr超能文献

人工智能辅助心电图检测地高辛中毒。

Detecting Digoxin Toxicity by Artificial Intelligence-Assisted Electrocardiography.

机构信息

Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.

Division of Cardiology, Heart Centre, Cheng Hsin General Hospital, Taipei 112, Taiwan.

出版信息

Int J Environ Res Public Health. 2021 Apr 6;18(7):3839. doi: 10.3390/ijerph18073839.

Abstract

Although digoxin is important in heart rate control, the utilization of digoxin is declining due to its narrow therapeutic window. Misdiagnosis or delayed diagnosis of digoxin toxicity is common due to the lack of awareness and the time-consuming laboratory work that is involved. Electrocardiography (ECG) may be able to detect potential digoxin toxicity based on characteristic presentations. Our study attempted to develop a deep learning model to detect digoxin toxicity based on ECG manifestations. This study included 61 ECGs from patients with digoxin toxicity and 177,066 ECGs from patients in the emergency room from November 2011 to February 2019. The deep learning algorithm was trained using approximately 80% of ECGs. The other 20% of ECGs were used to validate the performance of the Artificial Intelligence (AI) system and to conduct a human-machine competition. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the performance of ECG interpretation between humans and our deep learning system. The AUCs of our deep learning system for identifying digoxin toxicity were 0.912 and 0.929 in the validation cohort and the human-machine competition, respectively, which reached 84.6% of sensitivity and 94.6% of specificity. Interestingly, the deep learning system using only lead I (AUC = 0.960) was not worse than using complete 12 leads (0.912). Stratified analysis showed that our deep learning system was more applicable to patients with heart failure (HF) and without atrial fibrillation (AF) than those without HF and with AF. Our ECG-based deep learning system provides a high-accuracy, economical, rapid, and accessible way to detect digoxin toxicity, which can be applied as a promising decision supportive system for diagnosing digoxin toxicity in clinical practice.

摘要

虽然地高辛在控制心率方面很重要,但由于其治疗窗较窄,地高辛的使用正在减少。由于缺乏意识和涉及到的耗时的实验室工作,对地高辛毒性的误诊或延迟诊断很常见。心电图(ECG)可以根据特征表现检测潜在的地高辛毒性。我们的研究试图开发一种基于 ECG 表现的深度学习模型来检测地高辛毒性。这项研究包括 61 例地高辛中毒患者的心电图和 2011 年 11 月至 2019 年 2 月急诊科 177066 例患者的心电图。使用大约 80%的 ECG 来训练深度学习算法。其余 20%的 ECG 用于验证人工智能(AI)系统的性能,并进行人机竞赛。接受者操作特征曲线下的面积(AUC)、敏感性和特异性用于评估人与我们的深度学习系统之间 ECG 解释的性能。我们的深度学习系统识别地高辛毒性的 AUC 在验证队列和人机竞赛中分别为 0.912 和 0.929,达到 84.6%的敏感性和 94.6%的特异性。有趣的是,仅使用导联 I 的深度学习系统(AUC=0.960)并不逊于使用完整 12 导联(0.912)。分层分析表明,我们的深度学习系统更适用于心力衰竭(HF)患者和无房颤(AF)患者,而不适用于无 HF 和有 AF 的患者。我们基于 ECG 的深度学习系统为检测地高辛毒性提供了一种高精度、经济、快速和易于获得的方法,可以作为一种有前途的决策支持系统,用于临床实践中诊断地高辛毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f2/8038815/98e3823b6e61/ijerph-18-03839-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验