Division of Biological Sciences, University of California, San Diego, La Jolla, United States.
Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, United States.
Elife. 2018 Sep 13;7:e37072. doi: 10.7554/eLife.37072.
Microbial community structure and function rely on complex interactions whose underlying molecular mechanisms are poorly understood. To investigate these interactions in a simple microbiome, we introduced into an experimental community based on a cheese rind and identified the differences in s genetic requirements for growth in interactive and non-interactive contexts using Random Barcode Transposon Sequencing (RB-TnSeq) and RNASeq. Genetic requirements varied among pairwise growth conditions and between pairwise and community conditions. Our analysis points to mechanisms by which growth conditions change as a result of increasing community complexity and suggests that growth within a community relies on a combination of pairwise and higher-order interactions. Our work provides a framework for using the model organism as a readout to investigate microbial interactions regardless of the genetic tractability of members of the studied ecosystem.
微生物群落结构和功能依赖于复杂的相互作用,而这些相互作用的潜在分子机制还了解甚少。为了在一个简单的微生物群落中研究这些相互作用,我们将 引入到一个基于奶酪皮的实验群落中,并使用随机条形码转座子测序 (RB-TnSeq) 和 RNA 测序 (RNASeq) 来确定 在相互作用和非相互作用环境中生长的遗传需求差异。遗传需求在成对生长条件以及成对和群落条件之间存在差异。我们的分析指出了由于群落复杂性增加而导致生长条件变化的机制,并表明在群落中生长依赖于成对和更高阶相互作用的组合。我们的工作为使用模式生物 作为读出物来研究微生物相互作用提供了一个框架,无论所研究生态系统成员的遗传可操作性如何。