Suppr超能文献

基于卷积神经网络的实时同步肌电控制。

Real-time, simultaneous myoelectric control using a convolutional neural network.

机构信息

Department of Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.

出版信息

PLoS One. 2018 Sep 13;13(9):e0203835. doi: 10.1371/journal.pone.0203835. eCollection 2018.

Abstract

The evolution of deep learning techniques has been transformative as they have allowed complex mappings to be trained between control inputs and outputs without the need for feature engineering. In this work, a myoelectric control system based on convolutional neural networks (CNN) is proposed as a possible alternative to traditional approaches that rely on specifically designed features. This CNN-based system is validated using a real-time Fitts' law style target acquisition test requiring single and combined wrist motions. The performance of the proposed system is then compared to that of a standard support vector machine (SVM) based myoelectric system using a set of time-domain features. Despite the prevalence and demonstrated performance of these well-known features, no significant difference (p>0.05) was found between the two methods for any of the computed control metrics. This demonstrates the potential for automated learning approaches to extract complex and rich information from stochastic biological signals. This first evaluation of the usability of a CNN in a real-time myoelectric control environment provides a basis for further exploration.

摘要

深度学习技术的发展具有变革性,因为它们允许在控制输入和输出之间训练复杂的映射,而无需进行特征工程。在这项工作中,提出了一种基于卷积神经网络 (CNN) 的肌电控制系统,作为依赖于特定设计特征的传统方法的一种可能替代方案。该基于 CNN 的系统使用实时 Fitts 定律风格的目标采集测试进行验证,该测试需要单一和组合手腕运动。然后,使用一组时域特征将所提出的系统的性能与基于标准支持向量机 (SVM) 的肌电系统进行比较。尽管这些知名特征非常流行并且表现出色,但在所计算的任何控制指标中,两种方法之间都没有发现显著差异 (p>0.05)。这表明自动化学习方法有可能从随机生物信号中提取复杂而丰富的信息。这是首次在实时肌电控制环境中对 CNN 的可用性进行评估,为进一步探索提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/6136764/ab415cb41d5b/pone.0203835.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验