Suppr超能文献

大众媒体干预措施增加公众对抗菌药物管理的视觉情感分析。

A visual affective analysis of mass media interventions to increase antimicrobial stewardship amongst the public.

机构信息

Faculty of Arts & Social Sciences, Open University, Milton Keynes, UK.

School of Social Sciences, Monash University, Melbourne, Victoria, Australia.

出版信息

Br J Health Psychol. 2019 Feb;24(1):66-87. doi: 10.1111/bjhp.12339. Epub 2018 Sep 16.

Abstract

OBJECTIVES

In an innovative approach to improve the contribution of health psychology to public health we have analysed the presence and nature of affect within the visual materials deployed in antimicrobial stewardship interventions targeting the public identified through systematic review.

DESIGN

A qualitative analysis focused on the affective content of visual materials garnered from a systematic review of antibiotic stewardship (k = 20).

METHODS

A novel method was devised drawing on concepts from semiotics to analyse the affective elements within intervention materials.

RESULTS

Whilst all studies examined tacitly rely on affect, only one sought to explicitly deploy affect. Three thematic categories of affect are identified within the materials in which specific ideological machinery is deployed: (1) monsters, bugs, and superheroes; (2) responsibility, threat, and the misuse/abuse of antibiotics; (3) the figure of the child.

CONCLUSIONS

The study demonstrates how affect is a present but tacit communication strategy of antimicrobial stewardship interventions but has not - to date - been adequately theorized or explicitly considered in the intervention design process. Certain affective features were explored in relation to the effectiveness of antimicrobial resistance interventions and warrant further investigation. We argue that further research is needed to systematically illuminate and capitalize upon the use of affect to effect behaviour change concerning antimicrobial stewardship. Statement of contribution What is already known on this subject? The (mis)use of antibiotics and consequent risk of antimicrobial resistance is a critical public health problem. If sufficient action is not taken, global society will face the 'post-antibiotic' era, in which common infections will lead to death for many millions. Key desirable behavioural changes are decreased patient demands for antibiotics, use of them for targeted purposes alone, and compliance with prescribed dosing. There is a growth of interest in the role of affect in mass media interventions designed to engage publics and produce health-related behavioural change. What does this study add? This article presents a novel analytic approach to understanding and intervening within behaviour change in public health that may complement other types of analysis. We present findings specifically from an 'affective' analysis based on semiotics in which we critically interrogated the visual imagery being deployed in mass media public health interventions concerning antimicrobial stewardship. Three thematic categories of affect are identified within the materials in which specific ideological machinery is deployed and that demonstrate some association with intervention effectiveness worthy of further investigation and testing.

摘要

目的

为了提高健康心理学对公共卫生的贡献,我们采用一种创新方法,分析了针对通过系统评价确定的公众的抗菌药物管理干预措施中视觉材料所体现出的情感特征及其本质。

设计

一项定性分析重点关注从抗生素管理系统评价中获取的视觉材料的情感内容(k=20)。

方法

采用一种新颖的方法,借鉴符号学的概念来分析干预材料中的情感元素。

结果

虽然所有研究都在隐性地依赖情感,但只有一项研究试图明确地运用情感。在这些材料中,确定了三种主题类别的情感:(1)怪物、细菌和超级英雄;(2)责任、威胁和抗生素的滥用/误用;(3)儿童形象。

结论

该研究表明,情感是抗菌药物管理干预措施中一种存在但隐性的沟通策略,但迄今为止,在干预设计过程中尚未对其进行充分的理论化或明确考虑。某些情感特征与抗菌药物耐药性干预措施的效果有关,值得进一步研究。我们认为,需要进一步研究,以系统地阐明和利用情感来影响有关抗菌药物管理的行为改变。

关于这个主题,已经知道了什么?抗生素的(不当)使用以及由此产生的抗药性风险是一个严重的公共卫生问题。如果不采取足够的行动,全球社会将面临“后抗生素”时代,在这个时代,常见的感染将导致数百万人死亡。关键的理想行为改变是减少患者对抗生素的需求,仅将其用于有针对性的用途,以及遵守规定的剂量。人们越来越关注情感在旨在吸引公众并产生与健康相关的行为改变的大众媒体干预中的作用。

这项研究有什么新发现?本文提出了一种新颖的分析方法,用于理解和干预公共卫生中的行为改变,这可能会补充其他类型的分析。我们根据符号学提出了一种基于“情感”的分析,对影响抗菌药物管理的大众媒体公共卫生干预措施中使用的视觉图像进行了批判性地询问,提出了具体的发现。在这些材料中,确定了三种主题类别的情感,这些情感体现了与干预效果的一些关联,值得进一步调查和测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca59/6585774/8a5ad83f14b9/BJHP-24-66-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验