Suppr超能文献

全单片 CMOS-MEMS 谐振器中的热机械噪声特性。

Thermomechanical Noise Characterization in Fully Monolithic CMOS-MEMS Resonators.

机构信息

System Electronic Group (Physics Department), Universitat de les Illes Balears, 07122 Palma (Balearic Islands), Spain.

出版信息

Sensors (Basel). 2018 Sep 16;18(9):3124. doi: 10.3390/s18093124.

Abstract

We analyzed experimentally the noise characteristics of fully integrated CMOS-MEMS resonators to determine the overall thermomechanical noise and its impact on the limit of detection at the system level. Measurements from four MEMS resonator geometries designed for ultrasensitive detection operating between 2-MHz and 8-MHz monolithically integrated with a low-noise CMOS capacitive readout circuit were analyzed and used to determine the resolution achieved in terms of displacement and capacitance variation. The CMOS-MEMS system provides unprecedented detection resolution of 11 yF·Hz equivalent to a minimum detectable displacement (MDD) of 13 m·Hz, enabling noise characterization that is experimentally demonstrated by thermomechanical noise detection and compared to theoretical model values.

摘要

我们通过实验分析了全集成 CMOS-MEMS 谐振器的噪声特性,以确定整体热机械噪声及其对系统级检测极限的影响。我们分析了四个专为超灵敏检测设计的 MEMS 谐振器几何形状的测量结果,这些谐振器工作频率在 2MHz 到 8MHz 之间,与低噪声 CMOS 电容读取电路单片集成。通过测量结果,我们确定了在位移和电容变化方面的实现分辨率。该 CMOS-MEMS 系统提供了前所未有的检测分辨率 11 yF·Hz,相当于最小可检测位移 (MDD) 的 13 m·Hz,能够进行噪声特性分析,通过热机械噪声检测进行实验验证,并与理论模型值进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06c/6164022/5f7de7edec00/sensors-18-03124-g001.jpg

相似文献

1
Thermomechanical Noise Characterization in Fully Monolithic CMOS-MEMS Resonators.
Sensors (Basel). 2018 Sep 16;18(9):3124. doi: 10.3390/s18093124.
2
A Tunable-Gain Transimpedance Amplifier for CMOS-MEMS Resonators Characterization.
Micromachines (Basel). 2021 Jan 15;12(1):82. doi: 10.3390/mi12010082.
3
A 0.35-μm CMOS-MEMS Oscillator for High-Resolution Distributed Mass Detection.
Micromachines (Basel). 2018 Sep 22;9(10):484. doi: 10.3390/mi9100484.
4
Impact of Fluid Flow on CMOS-MEMS Resonators Oriented to Gas Sensing.
Sensors (Basel). 2020 Aug 19;20(17):4663. doi: 10.3390/s20174663.
5
Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jul;67(7):1377-1391. doi: 10.1109/TUFFC.2020.2969530. Epub 2020 Jan 27.
6
A VCO-Based CMOS Readout Circuit for Capacitive MEMS Microphones.
Sensors (Basel). 2019 Sep 24;19(19):4126. doi: 10.3390/s19194126.
9
Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.
Sensors (Basel). 2016 Dec 30;17(1):67. doi: 10.3390/s17010067.

本文引用的文献

1
Femtogram scale high frequency nano-optomechanical resonators in water.
Opt Express. 2017 Jan 23;25(2):821-830. doi: 10.1364/OE.25.000821.
2
Force sensitivity of multilayer graphene optomechanical devices.
Nat Commun. 2016 Aug 9;7:12496. doi: 10.1038/ncomms12496.
3
Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.
Beilstein J Nanotechnol. 2013;4:32-44. doi: 10.3762/bjnano.4.4. Epub 2013 Jan 17.
4
A nanomechanical mass sensor with yoctogram resolution.
Nat Nanotechnol. 2012 Apr 1;7(5):301-4. doi: 10.1038/nnano.2012.42.
5
Metal microelectromechanical oscillator exhibiting ultra-high water vapor resolution.
Lab Chip. 2011 Aug 21;11(16):2670-2. doi: 10.1039/c1lc20103d. Epub 2011 Jul 11.
6
High frequency GaAs nano-optomechanical disk resonator.
Phys Rev Lett. 2010 Dec 31;105(26):263903. doi: 10.1103/PhysRevLett.105.263903. Epub 2010 Dec 23.
7
In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection.
Nanotechnology. 2010 Apr 23;21(16):165504. doi: 10.1088/0957-4484/21/16/165504. Epub 2010 Mar 30.
8
Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications.
Nat Nanotechnol. 2007 Feb;2(2):114-20. doi: 10.1038/nnano.2006.208. Epub 2007 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验