Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
Int J Pharm. 2018 Nov 15;551(1-2):166-176. doi: 10.1016/j.ijpharm.2018.09.026. Epub 2018 Sep 15.
In the present study, the preparation of pharmaceutical mini-tablets was attempted in the framework of Quality by Design (QbD) context, by comparing traditionally used multi-linear regression (MLR), with artificially-intelligence based regression techniques (such as standard artificial neural networks (ANNs), particle swarm optimization (PSO) ANNs and genetic programming (GP)) during Design of Experiment (DoE) implementation. Specifically, the effect of diluent type and particle size fraction for three commonly used direct compression diluents (lactose, pregelatinized starch and dibasic calcium phosphate dihydrate, DCPD) blended with either hydrophilic or hydrophobic flowing aids was evaluated in terms of: a) powder blend properties (such as bulk (Y1) and tapped (Y) density, Carr's compressibility index (Y, CCI), Kawakita's compaction fitting parameters a (Y) and 1/b (Y)), and b) mini-tablet's properties (such as relative density (Y), average weight (Y) and weight variation (Y)). Results showed better flowing properties for pregelatinized starch and improved packing properties for lactose and DPCD. MLR analysis showed high goodness of fit for the Y, Y, Y, Y and Y with RMSE values of Y = 0.028, Y = 0.032, Y = 0.019, Y = 0.015 and Y = 0.130; while for rest responses, high correlation was observed from both standard ANNs and GP. PSO-ANNs fitting was the only regression technique that was able to adequately fit all responses simultaneously (RMSE values of Y = 0.026, Y = 0.022, Y = 0.025, Y = 0.010, Y = 0.063, Y = 0.013, Y = 0.064 and Y = 0.104).
在本研究中,尝试在质量源于设计(QbD)的背景下制备药物微型片剂,通过比较传统使用的多元线性回归(MLR)与基于人工智能的回归技术(如标准人工神经网络(ANNs)、粒子群优化(PSO)ANNs 和遗传编程(GP)),在实验设计(DoE)实施过程中。具体来说,评估了三种常用直接压片稀释剂(乳糖、预糊化淀粉和二水合磷酸二钙,DCPD)与亲水性或疏水性流动助剂混合时稀释剂类型和粒径分数对:a)粉末混合物性质(如堆积密度(Y1)和振实密度(Y)、卡尔可压缩性指数(Y,CCI)、川口压实拟合参数 a(Y)和 1/b(Y)),和 b)微型片剂的性质(如相对密度(Y)、平均重量(Y)和重量变化(Y))。结果表明,预糊化淀粉具有更好的流动性能,乳糖和 DPCD 具有改善的填充性能。MLR 分析表明,Y、Y、Y、Y 和 Y 的拟合度很好,RMSE 值分别为 Y=0.028、Y=0.032、Y=0.019、Y=0.015 和 Y=0.130;而对于其余的响应,标准 ANNs 和 GP 都观察到了高度的相关性。PSO-ANNs 拟合是唯一能够同时充分拟合所有响应的回归技术(Y 的 RMSE 值为 0.026、Y=0.022、Y=0.025、Y=0.010、Y=0.063、Y=0.013、Y=0.064 和 Y=0.104)。