Suppr超能文献

在线用户生成内容在传统流感监测方法中的附加价值。

The added value of online user-generated content in traditional methods for influenza surveillance.

机构信息

Public Health England, London, UK.

University College London, London, United Kingdom.

出版信息

Sci Rep. 2018 Sep 18;8(1):13963. doi: 10.1038/s41598-018-32029-6.

Abstract

There has been considerable work in evaluating the efficacy of using online data for health surveillance. Often comparisons with baseline data involve various squared error and correlation metrics. While useful, these overlook a variety of other factors important to public health bodies considering the adoption of such methods. In this paper, a proposed surveillance system that incorporates models based on recent research efforts is evaluated in terms of its added value for influenza surveillance at Public Health England. The system comprises of two supervised learning approaches trained on influenza-like illness (ILI) rates provided by the Royal College of General Practitioners (RCGP) and produces ILI estimates using Twitter posts or Google search queries. RCGP ILI rates for different age groups and laboratory confirmed cases by influenza type are used to evaluate the models with a particular focus on predicting the onset, overall intensity, peak activity and duration of the 2015/16 influenza season. We show that the Twitter-based models perform poorly and hypothesise that this is mostly due to the sparsity of the data available and a limited training period. Conversely, the Google-based model provides accurate estimates with timeliness of approximately one week and has the potential to complement current surveillance systems.

摘要

在评估使用在线数据进行健康监测的效果方面已经做了大量工作。通常,与基线数据的比较涉及各种平方误差和相关度量标准。虽然这些方法很有用,但它们忽略了对考虑采用此类方法的公共卫生机构来说很重要的各种其他因素。在本文中,评估了一种基于最近研究工作的提出的监测系统,以评估其在英国公共卫生署的流感监测方面的附加值。该系统包括两种基于 supervised learning 的方法,这些方法是基于皇家全科医师学院(RCGP)提供的流感样疾病(ILI)率进行训练的,并使用 Twitter 帖子或 Google 搜索查询来生成 ILI 估计值。使用 RCGP ILI 率对不同年龄段和实验室确认的流感类型病例进行评估,重点关注预测 2015/16 流感季节的发病、总体强度、高峰活动和持续时间。我们发现基于 Twitter 的模型表现不佳,并假设这主要是由于可用数据的稀疏性和有限的训练期造成的。相反,基于 Google 的模型提供了大约一周的及时性和准确性估计值,并且有可能补充当前的监测系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ec/6143510/ce85857ed885/41598_2018_32029_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验