Google, Santa Barbara, California 93117, USA.
University of California, Santa Barbara, California 93106, USA.
Phys Rev Lett. 2018 Aug 31;121(9):090502. doi: 10.1103/PhysRevLett.121.090502.
Superconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless, an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequency and time. Here, we use qubits as spectral and temporal probes of individual two-level-system defects to provide direct evidence that they are responsible for the largest fluctuations. This research lays the foundation for stabilizing qubit performance through calibration, design, and fabrication.
超导量子比特是量子计算的一个有吸引力的平台,因为它们已经展示了高保真度的量子门和可扩展到适度的系统规模。尽管如此,一个悬而未决的挑战是稳定它们的能量弛豫时间,这些时间在频率和时间上可能会不可预测地波动。在这里,我们使用量子比特作为单个双能级系统缺陷的光谱和时间探针,提供了它们是造成最大波动的直接证据。这项研究为通过校准、设计和制造来稳定量子比特性能奠定了基础。