用于可扩展量子计算的掩埋超薄氧化物的亚埃离子束工程

Subangstrom ion beam engineering of buried ultrathin oxides for scalable quantum computing.

作者信息

Smirnov Nikita S, Krivko Elizaveta A, Moskaleva Daria A, Moskalev Dmitry O, Solovieva Anastasia A, Matanin Aleksei R, Echeistov Vladimir V, Ivanov Аnton I, Malevannaya Elizaveta I, Polozov Viktor I, Zikiy Evgeny V, Korshakov Nikita D, Teleganov Maksim I, Mikhalin Dmitry A, Zhitkov Nikolai M, Romashkin Ruslan V, Korobenko Igor S, Yanilkin Aleksei V, Lebedev Аndrey V, Ryzhikov Ilya A, Andriyash Aleksander V, Rodionov Ilya A

机构信息

Shukhov Labs, Quantum Park, Bauman Moscow State Technical University, Moscow 105005, Russia.

Dukhov Automatics Research Institute, VNIIA, Moscow 127030, Russia.

出版信息

Sci Adv. 2025 May 9;11(19):eads9744. doi: 10.1126/sciadv.ads9744. Epub 2025 May 7.

Abstract

Multilayer nanoscale systems incorporating ultrathin tunnel barriers, magnetic materials, amorphous oxides, and promising dielectrics are essential for next-generation logics, memory, quantum, and neuro-inspired computing. Still, an ultrathin film control at the atomic scale remains challenging. Here, we introduce a complementary metal-oxide semiconductor-compatible approach using focused ion beam irradiation for buried ultrathin films' engineering with subangstrom thickness control. Molecular dynamics simulations confirm the pivotal role of ion-induced crystal defects. Its performance is exemplified by Josephson junction resistance tuning in the range of 2 to 37% with a 0.86% standard deviation in completed chips. Furthermore, it enables ±17-megahertz frequency accuracy (±0.172 angstrom tunnel barrier thickness variation) in superconducting multiqubit processors, as well as qubit energy relaxation and echo coherence times exceeding 0.5 milliseconds.

摘要

包含超薄隧道势垒、磁性材料、非晶氧化物和有前景的电介质的多层纳米级系统对于下一代逻辑、内存、量子和神经启发式计算至关重要。然而,在原子尺度上对超薄薄膜进行控制仍然具有挑战性。在此,我们引入一种与互补金属氧化物半导体兼容的方法,即使用聚焦离子束辐照来对埋藏的超薄薄膜进行工程设计,并实现亚埃级的厚度控制。分子动力学模拟证实了离子诱导晶体缺陷的关键作用。在完成的芯片中,约瑟夫森结电阻调谐范围为2%至37%,标准偏差为0.86%,这例证了其性能。此外,它还能在超导多量子比特处理器中实现±17兆赫兹的频率精度(±0.172埃隧道势垒厚度变化),以及使量子比特能量弛豫和回波相干时间超过0.5毫秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e37/12057654/907ffd6f350e/sciadv.ads9744-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索