Suppr超能文献

年轻的基因具有独特的基因结构、表观遗传特征和转录调控。

Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation.

机构信息

Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.

出版信息

Genome Res. 2018 Nov;28(11):1675-1687. doi: 10.1101/gr.234872.118. Epub 2018 Sep 19.

Abstract

Species-specific, new, or "orphan" genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.

摘要

物种特异性、新的或“孤儿”基因占真核生物基因组的 10%-30%。尽管最初认为这些基因的功能有限,但越来越多的孤儿基因被证明提供了重要的表型创新。新基因如何获得适当的时空表达的调控序列尚不清楚。孤儿基因的调控可能部分依赖于起源于邻近预先存在的启动子的开放染色质,尽管这尚未通过对染色质状态的全基因组分析进行评估。在这里,我们将丰富的线虫系统发育与 Iso-Seq、RNA-seq、ChIP-seq 和 ATAC-seq 相结合,以鉴定卫星模式线虫中的孤儿基因的基因结构和表观遗传特征。与先前的发现一致,我们发现年轻的基因更短,包含更少的外显子,并且平均表达水平低于较老的基因。然而,表达的孤儿基因亚组表现出与表达相似的保守基因不同的染色质状态。孤儿基因的转录由缺乏抑制性组蛋白修饰决定,证实了长期以来的假设,即开放染色质对于新基因的形成很重要。然而,孤儿基因起始位点更类似于由 H3K4me1、H3K27ac 和 ATAC-seq 峰定义的增强子,而保守基因则表现出由 H3K4me3 和 H3K27ac 定义的传统启动子。尽管大多数孤儿基因位于含有高重组率和抑制性组蛋白标记的染色体臂上,但强表达的孤儿基因的分布更为随机。我们的结果支持了一种新基因起源的模型,即罕见地整合到邻近增强子的开放染色质中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f1/6211652/070d605c4829/1675f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验