Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina.
Department of Biostatistics, University of Florida, Gainesville, Florida.
Stat Med. 2018 Dec 30;37(30):4807-4822. doi: 10.1002/sim.7979. Epub 2018 Sep 19.
There have been numerous attempts to extend the Wilcoxon rank-sum test to clustered data. Recently, one such rank-sum test (Dutta & Datta, 2016, Biometrics 72, 432-440) was developed to compare the group-specific marginal distributions of outcomes in clustered data where the conditional distributions of outcomes depend on the number of observations from that group in a given cluster, a phenomenon referred to as informative intra-cluster group (ICG) size. However, comparison of group-specific marginal distributions may not be sufficient in presence of some potentially useful covariables that are observed in the study. In addition, not accounting for the effect of these covariates can lead to biased and misleading inference for the group comparisons. Thus, the purpose of this article is twofold. First, we develop a method to estimate the covariate effects using rank-based weighted estimating equations that are appropriate when the ICG size is informative. Second, we construct an aligned rank-sum test based on the covariate adjusted outcomes. Asymptotic distributions of the R-estimators and the test statistic are provided. Through simulation studies, we show the importance of selecting proper weights in constructing the estimating equations when informativeness is present through the cluster or ICG sizes. We also demonstrate the superiority and the robustness of our method in comparison to regular parametric linear mixed models in clustered data. We apply our method to analyze different real-life data sets including a data on birthweights of rat pups in different litters and a dental data on tooth attachment loss.
已经有许多尝试将 Wilcoxon 秩和检验扩展到聚类数据。最近,有一种这样的秩和检验(Dutta 和 Datta,2016,Biometrics 72,432-440)被开发出来,用于比较聚类数据中组特定的边际分布,其中结局的条件分布取决于在给定聚类中来自该组的观测数量,这种现象称为信息丰富的聚类内组(ICG)大小。然而,在存在一些可能有用的协变量的情况下,比较组特定的边际分布可能是不够的,这些协变量在研究中是可以观察到的。此外,不考虑这些协变量的影响可能会导致组比较的有偏差和误导性推断。因此,本文的目的有两个。首先,我们开发了一种使用基于秩的加权估计方程来估计协变量效应的方法,当 ICG 大小具有信息性时,该方法是合适的。其次,我们基于协变量调整后的结局构建了一个对齐的秩和检验。提供了 R-估计量和检验统计量的渐近分布。通过模拟研究,我们展示了当通过聚类或 ICG 大小存在信息性时,在构建估计方程时选择适当权重的重要性。我们还展示了我们的方法在聚类数据中与常规参数线性混合模型相比的优越性和稳健性。我们将我们的方法应用于分析不同的真实数据集,包括不同窝仔鼠出生体重的数据和牙齿附着丧失的数据。