Suppr超能文献

通过基于磁共振成像的血流动力学组织特征改善胶质母细胞瘤患者预后的评估

Improving the estimation of prognosis for glioblastoma patients by MR based hemodynamic tissue signatures.

作者信息

Fuster-Garcia Elies, Juan-Albarracín Javier, García-Ferrando Germán A, Martí-Bonmatí Luis, Aparici-Robles Fernando, García-Gómez Juan M

机构信息

Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain.

Medical Imaging Department, La Fe Polytechnics and University Hospital, València, Spain.

出版信息

NMR Biomed. 2018 Dec;31(12):e4006. doi: 10.1002/nbm.4006. Epub 2018 Sep 21.

Abstract

Advanced MRI and molecular markers have been raised as crucial to improve prognostic models for patients having glioblastoma (GBM) lesions. In particular, different MR perfusion based markers describing vascular intrapatient heterogeneity have been correlated with tumor aggressiveness, and represent key information to understand tumor resistance against effective therapies of these neoplasms. Recently, hemodynamic tissue signature (HTS) markers based on MR perfusion images have been demonstrated to be useful for describing the heterogeneity of GBM at the voxel level, as well as demonstrating significant correlations with the patient's overall survival. In this work, we analyze the abilities of these markers to improve the conventional prognostic models based on clinical, morphological, and demographic features. Our results, in both the regression and classification tests, show that inclusion of the HTS markers improves the reliability of prognostic models. The HTS method is fully automatic and it is available for research use at http://www.oncohabitats.upv.es.

摘要

先进的磁共振成像(MRI)和分子标志物对于改善胶质母细胞瘤(GBM)患者的预后模型至关重要。特别是,描述患者体内血管异质性的不同基于磁共振灌注的标志物已与肿瘤侵袭性相关联,并且是理解这些肿瘤对有效治疗的耐药性的关键信息。最近,基于磁共振灌注图像的血流动力学组织特征(HTS)标志物已被证明可用于在体素水平描述GBM的异质性,并与患者的总生存期显示出显著相关性。在这项工作中,我们分析了这些标志物基于临床、形态学和人口统计学特征改善传统预后模型的能力。我们在回归和分类测试中的结果表明,纳入HTS标志物可提高预后模型的可靠性。HTS方法是完全自动化的,可在http://www.oncohabitats.upv.es上用于研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验