Suppr超能文献

如何在基于广义线性模型的功能磁共振成像数据分析中避免模型误设:交叉验证贝叶斯模型选择

How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection.

作者信息

Soch Joram, Haynes John-Dylan, Allefeld Carsten

机构信息

Bernstein Center for Computational Neuroscience, Berlin, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Germany.

Bernstein Center for Computational Neuroscience, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Berlin, Germany; Berlin School of Mind and Brain, Berlin, Germany; Excellence Cluster NeuroCure, Charité-Universitätsmedizin Berlin, Germany; Department of Neurology, Charité-Universitätsmedizin Berlin, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Germany.

出版信息

Neuroimage. 2016 Nov 1;141:469-489. doi: 10.1016/j.neuroimage.2016.07.047. Epub 2016 Jul 28.

Abstract

Voxel-wise general linear models (GLMs) are a standard approach for analyzing functional magnetic resonance imaging (fMRI) data. An advantage of GLMs is that they are flexible and can be adapted to the requirements of many different data sets. However, the specification of first-level GLMs leaves the researcher with many degrees of freedom which is problematic given recent efforts to ensure robust and reproducible fMRI data analysis. Formal model comparisons that allow a systematic assessment of GLMs are only rarely performed. On the one hand, too simple models may underfit data and leave real effects undiscovered. On the other hand, too complex models might overfit data and also reduce statistical power. Here we present a systematic approach termed cross-validated Bayesian model selection (cvBMS) that allows to decide which GLM best describes a given fMRI data set. Importantly, our approach allows for non-nested model comparison, i.e. comparing more than two models that do not just differ by adding one or more regressors. It also allows for spatially heterogeneous modelling, i.e. using different models for different parts of the brain. We validate our method using simulated data and demonstrate potential applications to empirical data. The increased use of model comparison and model selection should increase the reliability of GLM results and reproducibility of fMRI studies.

摘要

体素级广义线性模型(GLMs)是分析功能磁共振成像(fMRI)数据的标准方法。GLMs的一个优点是它们具有灵活性,能够适应许多不同数据集的要求。然而,一级GLMs的设定给研究人员留下了许多自由度,鉴于最近为确保fMRI数据分析的稳健性和可重复性所做的努力,这是个问题。很少进行能够对GLMs进行系统评估的正式模型比较。一方面,过于简单的模型可能无法很好地拟合数据,从而遗漏真实效应。另一方面,过于复杂的模型可能会过度拟合数据,同时也会降低统计效力。在此,我们提出一种称为交叉验证贝叶斯模型选择(cvBMS)的系统方法,该方法能够确定哪个GLM最能描述给定的fMRI数据集。重要的是,我们的方法允许进行非嵌套模型比较,即比较两个以上不仅仅通过添加一个或多个回归变量而不同的模型。它还允许进行空间异质性建模,即在大脑的不同部分使用不同的模型。我们使用模拟数据验证了我们的方法,并展示了其在实证数据中的潜在应用。模型比较和模型选择的更多使用应该会提高GLM结果的可靠性和fMRI研究的可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验