Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA.
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
Genome Biol. 2018 Sep 21;19(1):141. doi: 10.1186/s13059-018-1513-2.
We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by leveraging an easily obtainable prior knowledge on the cell-type composition distribution of the studied tissue. We show mathematically and empirically that alternative methods which attempt to infer cell counts without methylation reference only capture linear combinations of cell counts rather than provide one component per cell type. Our approach allows the construction of components such that each component corresponds to a single cell type, and provides a new opportunity to investigate cell compositions in genomic studies of tissues for which it was not possible before.
我们介绍了一种贝叶斯半监督方法,通过利用研究组织中细胞类型组成分布的易得先验知识,从 DNA 甲基化数据中估计细胞计数。我们从数学和经验上证明,尝试在没有甲基化参考的情况下推断细胞计数的替代方法只能捕获细胞计数的线性组合,而不能为每个细胞类型提供一个分量。我们的方法允许构建这样的分量,即每个分量对应于单个细胞类型,并为以前不可能的组织基因组研究中的细胞组成提供了新的研究机会。