From the Faculty of Pharma-Science, Teikyo University, Tokyo 173- 8605, Japan and.
Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima City, Fukushima 960-1295, Japan.
J Biol Chem. 2018 Nov 9;293(45):17505-17522. doi: 10.1074/jbc.RA118.002048. Epub 2018 Sep 21.
Sphingolipids, including sphingomyelin (SM) and glucosylceramide (GlcCer), are generated by the addition of a polar head group to ceramide (Cer). Sphingomyelin synthase 1 (SMS1) and glucosylceramide synthase (GCS) are key enzymes that catalyze the conversion of Cer to SM and GlcCer, respectively. GlcCer synthesis has been postulated to occur mainly in -Golgi, and SM synthesis is thought to occur in /-Golgi; however, SMS1 and GCS are known to partially co-localize in cisternae, especially in -Golgi. Here, we report that SMS1 and GCS can form a heteromeric complex, in which the N terminus of SMS1 and the C terminus of GCS are in close proximity. Deletion of the N-terminal sterile α-motif of SMS1 reduced the stability of the SMS1-GCS complex, resulting in a significant reduction in SM synthesis In contrast, chemical-induced heterodimerization augmented SMS1 activity, depending on an increase in the amount and stability of the complex. Fusion of the SMS1 N terminus to the GCS C terminus via linkers of different lengths increased SM synthesis and decreased GlcCer synthesis These results suggest that formation of the SMS1-GCS heteromeric complex increases SM synthesis and decreases GlcCer synthesis. Importantly, this regulation of relative Cer levels by the SMS1-GCS complex was confirmed by CRISPR/Cas9-mediated knockout of SMS1 or GCS combined with pharmacological inhibition of Cer transport protein in HEK293T cells. Our findings suggest that complex formation between SMS1 and GCS is part of a critical mechanism controlling the metabolic fate of Cer in the Golgi.
鞘脂类,包括神经鞘磷脂(SM)和葡萄糖神经酰胺(GlcCer),是通过在神经酰胺(Cer)上加一个极性头基生成的。神经鞘磷脂合酶 1(SMS1)和葡萄糖神经酰胺合酶(GCS)是分别催化 Cer 转化为 SM 和 GlcCer 的关键酶。据推测,GlcCer 的合成主要发生在 -高尔基体内,而 SM 的合成则发生在 /-高尔基体内;然而,SMS1 和 GCS 已知部分共定位于潴泡中,特别是在 -高尔基体内。在这里,我们报告说 SMS1 和 GCS 可以形成异源二聚体复合物,其中 SMS1 的 N 端和 GCS 的 C 端紧密相邻。SMS1 的 N 端无酶α基序的缺失降低了 SMS1-GCS 复合物的稳定性,导致 SM 合成显著减少。相比之下,化学诱导的异二聚化增强了 SMS1 的活性,这取决于复合物的数量和稳定性的增加。通过不同长度的接头将 SMS1 的 N 端与 GCS 的 C 端融合,增加了 SM 的合成,减少了 GlcCer 的合成。这些结果表明,SMS1-GCS 异源二聚体复合物的形成增加了 SM 的合成,减少了 GlcCer 的合成。重要的是,通过 CRISPR/Cas9 介导的 SMS1 或 GCS 的敲除以及 Cer 转运蛋白的药理学抑制,在 HEK293T 细胞中证实了 SMS1-GCS 复合物对相对 Cer 水平的这种调节作用。我们的研究结果表明,SMS1 和 GCS 之间的复合物形成是控制 Cer 在高尔基体内代谢命运的关键机制的一部分。