Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, QC, H3A 0E9, Canada.
Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8, Canada.
Nat Commun. 2018 Sep 21;9(1):3856. doi: 10.1038/s41467-018-06140-1.
The combination of earth-abundant catalysts and semiconductors, for example, molybdenum sulfides and planar silicon, presents a promising avenue for the large-scale conversion of solar energy to hydrogen. The inferior interface between molybdenum sulfides and planar silicon, however, severely suppresses charge carrier extraction, thus limiting the performance. Here, we demonstrate that defect-free gallium nitride nanowire is ideally used as a linker of planar silicon and molybdenum sulfides to produce a high-quality shell-core heterostructure. Theoretical calculations revealed that the unique electronic interaction and the excellent geometric-matching structure between gallium nitride and molybdenum sulfides enabled an ideal electron-migration channel for high charge carrier extraction efficiency, leading to outstanding performance. A benchmarking current density of 40 ± 1 mA cm at 0 V vs. reversible hydrogen electrode, the highest value ever reported for a planar silicon electrode without noble metals, and a large onset potential of +0.4 V were achieved under standard one-sun illumination.
例如,将丰富的地球催化剂和半导体(例如,硫化钼和平面硅)相结合,为大规模将太阳能转化为氢气提供了有前途的途径。然而,硫化钼和平面硅之间较差的界面严重抑制了载流子的提取,从而限制了性能。在这里,我们证明了无缺陷的氮化镓纳米线可用作平面硅和硫化钼的连接体,以产生高质量的壳核异质结构。理论计算表明,氮化镓和硫化钼之间独特的电子相互作用和优异的几何匹配结构为高电荷载流子提取效率提供了理想的电子迁移通道,从而实现了出色的性能。在标准的单光照下,实现了 40±1 mA·cm 的基准电流密度(相对于可逆氢电极为 0 V),这是在没有贵金属的情况下,平面硅电极的最高值,并且起始电位高达+0.4 V。