The Department of Biostatistics, Columbia University, 722 West 168th St., New York, NY, USA.
The Division of Biostatistics, School of Public Health, University of Minneapolis, 420 Delaware Street S.E., Minneapolis, MN, USA.
Biostatistics. 2020 Apr 1;21(2):302-318. doi: 10.1093/biostatistics/kxy052.
High-dimensional multi-source data are encountered in many fields. Despite recent developments on the integrative dimension reduction of such data, most existing methods cannot easily accommodate data of multiple types (e.g. binary or count-valued). Moreover, multi-source data often have block-wise missing structure, i.e. data in one or more sources may be completely unobserved for a sample. The heterogeneous data types and presence of block-wise missing data pose significant challenges to the integration of multi-source data and further statistical analyses. In this article, we develop a low-rank method, called generalized integrative principal component analysis (GIPCA), for the simultaneous dimension reduction and imputation of multi-source block-wise missing data, where different sources may have different data types. We also devise an adapted Bayesian information criterion (BIC) criterion for rank estimation. Comprehensive simulation studies demonstrate the efficacy of the proposed method in terms of rank estimation, signal recovery, and missing data imputation. We apply GIPCA to a mortality study. We achieve accurate block-wise missing data imputation and identify intriguing latent mortality rate patterns with sociological relevance.
在许多领域都会遇到高维多源数据。尽管最近在整合此类数据的维度降低方面取得了进展,但大多数现有方法都不容易适应多种类型的数据(例如二进制或计数型)。此外,多源数据通常具有块状缺失结构,即一个或多个源中的数据对于一个样本可能完全未被观测到。异构数据类型和块状缺失数据的存在给多源数据的整合和进一步的统计分析带来了重大挑战。在本文中,我们开发了一种低秩方法,称为广义综合主成分分析(GIPCA),用于同时对多源块状缺失数据进行降维和插补,其中不同的源可能具有不同的数据类型。我们还设计了一种适用于秩估计的自适应贝叶斯信息准则(BIC)准则。综合模拟研究表明,该方法在秩估计、信号恢复和缺失数据插补方面具有有效性。我们将 GIPCA 应用于一项死亡率研究。我们实现了准确的块状缺失数据插补,并发现了具有社会学相关性的有趣潜在死亡率模式。