Suppr超能文献

广义整合主成分分析在具有分块缺失结构的多类型数据中的应用。

Generalized integrative principal component analysis for multi-type data with block-wise missing structure.

机构信息

The Department of Biostatistics, Columbia University, 722 West 168th St., New York, NY, USA.

The Division of Biostatistics, School of Public Health, University of Minneapolis, 420 Delaware Street S.E., Minneapolis, MN, USA.

出版信息

Biostatistics. 2020 Apr 1;21(2):302-318. doi: 10.1093/biostatistics/kxy052.

Abstract

High-dimensional multi-source data are encountered in many fields. Despite recent developments on the integrative dimension reduction of such data, most existing methods cannot easily accommodate data of multiple types (e.g. binary or count-valued). Moreover, multi-source data often have block-wise missing structure, i.e. data in one or more sources may be completely unobserved for a sample. The heterogeneous data types and presence of block-wise missing data pose significant challenges to the integration of multi-source data and further statistical analyses. In this article, we develop a low-rank method, called generalized integrative principal component analysis (GIPCA), for the simultaneous dimension reduction and imputation of multi-source block-wise missing data, where different sources may have different data types. We also devise an adapted Bayesian information criterion (BIC) criterion for rank estimation. Comprehensive simulation studies demonstrate the efficacy of the proposed method in terms of rank estimation, signal recovery, and missing data imputation. We apply GIPCA to a mortality study. We achieve accurate block-wise missing data imputation and identify intriguing latent mortality rate patterns with sociological relevance.

摘要

在许多领域都会遇到高维多源数据。尽管最近在整合此类数据的维度降低方面取得了进展,但大多数现有方法都不容易适应多种类型的数据(例如二进制或计数型)。此外,多源数据通常具有块状缺失结构,即一个或多个源中的数据对于一个样本可能完全未被观测到。异构数据类型和块状缺失数据的存在给多源数据的整合和进一步的统计分析带来了重大挑战。在本文中,我们开发了一种低秩方法,称为广义综合主成分分析(GIPCA),用于同时对多源块状缺失数据进行降维和插补,其中不同的源可能具有不同的数据类型。我们还设计了一种适用于秩估计的自适应贝叶斯信息准则(BIC)准则。综合模拟研究表明,该方法在秩估计、信号恢复和缺失数据插补方面具有有效性。我们将 GIPCA 应用于一项死亡率研究。我们实现了准确的块状缺失数据插补,并发现了具有社会学相关性的有趣潜在死亡率模式。

相似文献

1
Generalized integrative principal component analysis for multi-type data with block-wise missing structure.
Biostatistics. 2020 Apr 1;21(2):302-318. doi: 10.1093/biostatistics/kxy052.
2
Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data.
Psychometrika. 2023 Sep;88(3):975-1001. doi: 10.1007/s11336-023-09918-5. Epub 2023 Jun 2.
3
Bayesian Extended Redundancy Analysis: A Bayesian Approach to Component-based Regression with Dimension Reduction.
Multivariate Behav Res. 2020 Jan-Feb;55(1):30-48. doi: 10.1080/00273171.2019.1598837. Epub 2019 Apr 25.
5
A Bayesian multiple imputation approach to bivariate functional data with missing components.
Stat Med. 2021 Sep 30;40(22):4772-4793. doi: 10.1002/sim.9093. Epub 2021 Jun 8.
6
Multiple imputation in the presence of high-dimensional data.
Stat Methods Med Res. 2016 Oct;25(5):2021-2035. doi: 10.1177/0962280213511027. Epub 2013 Nov 25.
7
Variational Bayesian mixture model on a subspace of exponential family distributions.
IEEE Trans Neural Netw. 2009 Nov;20(11):1783-96. doi: 10.1109/TNN.2009.2029694. Epub 2009 Sep 18.
8
A hybrid imputation approach for microarray missing value estimation.
BMC Genomics. 2015;16 Suppl 9(Suppl 9):S1. doi: 10.1186/1471-2164-16-S9-S1. Epub 2015 Aug 17.
10
Bayesian Simultaneous Factorization and Prediction Using Multi-Omic Data.
Comput Stat Data Anal. 2024 Sep;197. doi: 10.1016/j.csda.2024.107974. Epub 2024 Apr 30.

引用本文的文献

1
Imputation-Based Variable Selection Method for Block-Wise Missing Data When Integrating Multiple Longitudinal Studies.
Mathematics (Basel). 2024 Apr;12(7). doi: 10.3390/math12070951. Epub 2024 Mar 23.
2
Multilayer Exponential Family Factor models for integrative analysis and learning disease progression.
Biostatistics. 2023 Dec 15;25(1):203-219. doi: 10.1093/biostatistics/kxac042.
3
sJIVE: Supervised Joint and Individual Variation Explained.
Comput Stat Data Anal. 2022 Nov;175. doi: 10.1016/j.csda.2022.107547. Epub 2022 Jun 14.
4
A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data.
BMC Bioinformatics. 2022 Jun 17;23(1):235. doi: 10.1186/s12859-022-04770-3.
5
Heterogeneous data integration methods for patient similarity networks.
Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac207.
6
BIDIMENSIONAL LINKED MATRIX FACTORIZATION FOR PAN-OMICS PAN-CANCER ANALYSIS.
Ann Appl Stat. 2022 Mar;16(1):193-215. doi: 10.1214/21-AOAS1495. Epub 2022 Mar 28.
7
Generalized Co-Clustering Analysis via Regularized Alternating Least Squares.
Comput Stat Data Anal. 2020 Oct;150. doi: 10.1016/j.csda.2020.106989. Epub 2020 May 4.
8
Metabolomics and Multi-Omics Integration: A Survey of Computational Methods and Resources.
Metabolites. 2020 May 15;10(5):202. doi: 10.3390/metabo10050202.
9
Integrative factorization of bidimensionally linked matrices.
Biometrics. 2020 Mar;76(1):61-74. doi: 10.1111/biom.13141. Epub 2019 Nov 10.

本文引用的文献

1
Heterogeneity adjustment with applications to graphical model inference.
Electron J Stat. 2018;12(2):3908-3952. doi: 10.1214/18-EJS1466. Epub 2018 Dec 5.
2
Incorporating covariates into integrated factor analysis of multi-view data.
Biometrics. 2017 Dec;73(4):1433-1442. doi: 10.1111/biom.12698. Epub 2017 Apr 13.
3
Structured Matrix Completion with Applications to Genomic Data Integration.
J Am Stat Assoc. 2016;111(514):621-633. doi: 10.1080/01621459.2015.1021005. Epub 2016 Aug 18.
4
R.JIVE for exploration of multi-source molecular data.
Bioinformatics. 2016 Sep 15;32(18):2877-9. doi: 10.1093/bioinformatics/btw324. Epub 2016 Jun 6.
5
Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction.
IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2426-2439. doi: 10.1109/TNNLS.2015.2487364. Epub 2015 Oct 28.
6
A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data.
Bioinformatics. 2016 Jan 1;32(1):1-8. doi: 10.1093/bioinformatics/btv544. Epub 2015 Sep 15.
8
Bayesian joint analysis of heterogeneous genomics data.
Bioinformatics. 2014 May 15;30(10):1370-6. doi: 10.1093/bioinformatics/btu064. Epub 2014 Jan 30.
9
Performing DISCO-SCA to search for distinctive and common information in linked data.
Behav Res Methods. 2014 Jun;46(2):576-87. doi: 10.3758/s13428-013-0374-6.
10
Bi-level multi-source learning for heterogeneous block-wise missing data.
Neuroimage. 2014 Nov 15;102 Pt 1:192-206. doi: 10.1016/j.neuroimage.2013.08.015. Epub 2013 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验