Suppr超能文献

sJIVE:监督联合与个体变异解释

sJIVE: Supervised Joint and Individual Variation Explained.

作者信息

Palzer Elise F, Wendt Christine H, Bowler Russell P, Hersh Craig P, Safo Sandra E, Lock Eric F

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA.

Division of Pulmonary, Allergy and Critical Care, University of Minnesota, Minneapolis, 55455, USA.

出版信息

Comput Stat Data Anal. 2022 Nov;175. doi: 10.1016/j.csda.2022.107547. Epub 2022 Jun 14.

Abstract

Analyzing multi-source data, which are multiple views of data on the same subjects, has become increasingly common in molecular biomedical research. Recent methods have sought to uncover underlying structure and relationships within and/or between the data sources, and other methods have sought to build a predictive model for an outcome using all sources. However, existing methods that do both are presently limited because they either (1) only consider data structure shared by all datasets while ignoring structures unique to each source, or (2) they extract underlying structures first without consideration to the outcome. The proposed method, supervised joint and individual variation explained (sJIVE), can simultaneously (1) identify shared (joint) and source-specific (individual) underlying structure and (2) build a linear prediction model for an outcome using these structures. These two components are weighted to compromise between explaining variation in the multi-source data and in the outcome. Simulations show sJIVE to outperform existing methods when large amounts of noise are present in the multi-source data. An application to data from the COPDGene study explores gene expression and proteomic patterns associated with lung function.

摘要

分析多源数据(即关于同一研究对象的多个数据视图)在分子生物医学研究中已变得越来越普遍。近期的方法试图揭示数据源内部和/或之间的潜在结构及关系,还有些方法试图使用所有数据源构建针对某一结果的预测模型。然而,目前能同时做到这两点的现有方法存在局限,因为它们要么(1)仅考虑所有数据集共有的数据结构,而忽略每个数据源特有的结构,要么(2)先提取潜在结构而不考虑结果。所提出的监督联合与个体变异解释(sJIVE)方法能够同时(1)识别共享(联合)和特定于数据源(个体)的潜在结构,以及(2)使用这些结构构建针对某一结果的线性预测模型。这两个部分会进行加权,以便在解释多源数据中的变异和结果中的变异之间达成平衡。模拟结果表明,当多源数据中存在大量噪声时,sJIVE的表现优于现有方法。对慢性阻塞性肺疾病基因(COPDGene)研究数据的一项应用探索了与肺功能相关的基因表达和蛋白质组学模式。

相似文献

1
sJIVE: Supervised Joint and Individual Variation Explained.sJIVE:监督联合与个体变异解释
Comput Stat Data Anal. 2022 Nov;175. doi: 10.1016/j.csda.2022.107547. Epub 2022 Jun 14.
5
Prediction With Dimension Reduction of Multiple Molecular Data Sources for Patient Survival.利用多分子数据源降维预测患者生存率
Cancer Inform. 2017 Jul 11;16:1176935117718517. doi: 10.1177/1176935117718517. eCollection 2017.
8
Structural learning and integrative decomposition of multi-view data.多视图数据的结构学习与整合分解
Biometrics. 2019 Dec;75(4):1121-1132. doi: 10.1111/biom.13108. Epub 2019 Sep 15.
9
Semi-Supervised Structured Subspace Learning for Multi-View Clustering.用于多视图聚类的半监督结构化子空间学习
IEEE Trans Image Process. 2022;31:1-14. doi: 10.1109/TIP.2021.3128325. Epub 2021 Nov 24.
10
Joint association and classification analysis of multi-view data.多视图数据的联合关联与分类分析
Biometrics. 2022 Dec;78(4):1614-1625. doi: 10.1111/biom.13536. Epub 2021 Aug 22.

引用本文的文献

2
Joint and Individual Component Regression.联合与个体成分回归
J Comput Graph Stat. 2024;33(3):763-773. doi: 10.1080/10618600.2023.2284227. Epub 2023 Dec 29.
6
Bayesian Simultaneous Factorization and Prediction Using Multi-Omic Data.使用多组学数据的贝叶斯同时分解与预测
Comput Stat Data Anal. 2024 Sep;197. doi: 10.1016/j.csda.2024.107974. Epub 2024 Apr 30.
8
mvlearnR and Shiny App for multiview learning.用于多视图学习的mvlearnR和Shiny应用程序。
Bioinform Adv. 2024 Jan 16;4(1):vbae005. doi: 10.1093/bioadv/vbae005. eCollection 2024.
9
Bayesian predictive modeling of multi-source multi-way data.多源多向数据的贝叶斯预测建模
Comput Stat Data Anal. 2023 Oct;186. doi: 10.1016/j.csda.2023.107783. Epub 2023 May 19.

本文引用的文献

1
Joint association and classification analysis of multi-view data.多视图数据的联合关联与分类分析
Biometrics. 2022 Dec;78(4):1614-1625. doi: 10.1111/biom.13536. Epub 2021 Aug 22.
3
Sparse linear discriminant analysis for multiview structured data.多视角结构数据的稀疏线性判别分析。
Biometrics. 2022 Jun;78(2):612-623. doi: 10.1111/biom.13458. Epub 2021 Mar 30.
8
Structural learning and integrative decomposition of multi-view data.多视图数据的结构学习与整合分解
Biometrics. 2019 Dec;75(4):1121-1132. doi: 10.1111/biom.13108. Epub 2019 Sep 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验