Suppr超能文献

大脑中的推理:冗余群体编码中的统计信息流动

Inference in the Brain: Statistics Flowing in Redundant Population Codes.

作者信息

Pitkow Xaq, Angelaki Dora E

机构信息

Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.

Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.

出版信息

Neuron. 2017 Jun 7;94(5):943-953. doi: 10.1016/j.neuron.2017.05.028.

Abstract

It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors.

摘要

人们普遍认为,大脑通过近似概率推理,从模糊的感官数据中估计世界中的因果变量。为了理解这些计算过程,我们需要分析非线性递归神经网络的活动是如何表示和转换信息的。我们提出,这些概率计算通过在冗余神经群体层面运行的消息传递算法来实现。为了解释这个框架,我们回顾其基础概念,包括图形模型、充分统计量和消息传递,然后描述这些概念如何通过递归连接的概率群体编码来实现。这些网络中的相关信息流在群体层面最具可解释性,特别是对于冗余神经编码。因此,我们概述了一种识别神经消息传递算法基本特征的通用方法。最后,我们认为,为了揭示这些神经计算的最重要方面,我们必须研究适度复杂的自然行为期间的大规模活动模式。

相似文献

2
The Redemption of Noise: Inference with Neural Populations.《噪声的救赎:神经群体推断》
Trends Neurosci. 2018 Nov;41(11):767-770. doi: 10.1016/j.tins.2018.09.003.
4
Chaotic neural dynamics facilitate probabilistic computations through sampling.混沌神经网络动力学通过采样促进概率计算。
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2312992121. doi: 10.1073/pnas.2312992121. Epub 2024 Apr 22.
5
Neural population codes.神经群体编码
Curr Opin Neurobiol. 2003 Apr;13(2):238-49. doi: 10.1016/s0959-4388(03)00034-5.
6
Spiking networks for Bayesian inference and choice.用于贝叶斯推理和决策的脉冲神经网络
Curr Opin Neurobiol. 2008 Apr;18(2):217-22. doi: 10.1016/j.conb.2008.07.004. Epub 2008 Aug 21.
7
Neural processing as causal inference.神经处理作为因果推理。
Curr Opin Neurobiol. 2011 Oct;21(5):774-81. doi: 10.1016/j.conb.2011.05.018.
9
Cortical circuits for perceptual inference.用于知觉推断的皮质电路。
Neural Netw. 2009 Oct;22(8):1093-104. doi: 10.1016/j.neunet.2009.07.023. Epub 2009 Jul 19.

引用本文的文献

5
Response sub-additivity and variability quenching in visual cortex.视觉皮层中的反应次加性和变异性淬火。
Nat Rev Neurosci. 2024 Apr;25(4):237-252. doi: 10.1038/s41583-024-00795-0. Epub 2024 Feb 19.
7
Post-injury pain and behaviour: a control theory perspective.创伤后疼痛与行为:控制理论视角
Nat Rev Neurosci. 2023 Jun;24(6):378-392. doi: 10.1038/s41583-023-00699-5. Epub 2023 May 10.

本文引用的文献

1
Inferring decoding strategies for multiple correlated neural populations.推断多个相关神经群体的解码策略。
PLoS Comput Biol. 2018 Sep 24;14(9):e1006371. doi: 10.1371/journal.pcbi.1006371. eCollection 2018 Sep.
2
Learning unbelievable probabilities.学习令人难以置信的概率。
Adv Neural Inf Process Syst. 2011 Dec;24:738-746.
3
Robust information propagation through noisy neural circuits.通过嘈杂神经回路进行的稳健信息传播。
PLoS Comput Biol. 2017 Apr 18;13(4):e1005497. doi: 10.1371/journal.pcbi.1005497. eCollection 2017 Apr.
4
Could a Neuroscientist Understand a Microprocessor?神经科学家能理解微处理器吗?
PLoS Comput Biol. 2017 Jan 12;13(1):e1005268. doi: 10.1371/journal.pcbi.1005268. eCollection 2017 Jan.
6
Perceptual Decision-Making as Probabilistic Inference by Neural Sampling.知觉决策制定作为神经采样的概率推理。
Neuron. 2016 May 4;90(3):649-60. doi: 10.1016/j.neuron.2016.03.020. Epub 2016 Apr 14.
7
Origin of information-limiting noise correlations.信息限制噪声相关性的起源。
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6973-82. doi: 10.1073/pnas.1508738112. Epub 2015 Nov 30.
10
How Can Single Sensory Neurons Predict Behavior?单个感觉神经元如何预测行为?
Neuron. 2015 Jul 15;87(2):411-23. doi: 10.1016/j.neuron.2015.06.033.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验