Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215, and.
Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215, and
J Neurosci. 2018 Nov 21;38(47):10019-10041. doi: 10.1523/JNEUROSCI.1267-18.2018. Epub 2018 Sep 24.
The amygdala projects to hippocampus in pathways through which affective or social stimuli may influence learning and memory. We investigated the still unknown amygdalar termination patterns and their postsynaptic targets in hippocampus from system to synapse in rhesus monkeys of both sexes. The amygdala robustly innervated the stratum lacunosum-moleculare layer of cornu ammonis fields and uncus anteriorly. Sparser terminations in posterior hippocampus innervated the radiatum and pyramidal layers at the prosubicular/CA1 juncture. The terminations, which were larger than other afferents in the surrounding neuropil, position the amygdala to influence hippocampal input anteriorly, and its output posteriorly. Most amygdalar boutons (76-80%) innervated spines of excitatory hippocampal neurons, and most of the remaining innervated presumed inhibitory neurons, identified by morphology and label with parvalbumin or calretinin, which distinguished nonoverlapping neurochemical classes of hippocampal inhibitory neurons. In CA1, amygdalar axons innervated some calretinin neurons, which disinhibit pyramidal neurons. By contrast, in CA3 the amygdala innervated both calretinin and parvalbumin neurons; the latter strongly inhibit nearby excitatory neurons. In CA3, amygdalar pathways also made closely spaced dual synapses on excitatory neurons. The strong excitatory synapses in CA3 may facilitate affective context representations and trigger sharp-wave ripples associated with memory consolidation. When the amygdala is excessively activated during traumatic events, the specialized innervation of excitatory neurons and the powerful parvalbumin inhibitory neurons in CA3 may allow the suppression of activity of nearby neurons that receive weaker nonamygdalar input, leading to biased passage of highly charged affective stimuli and generalized fear. Strong pathways from the amygdala targeted the anterior hippocampus, and more weakly its posterior sectors, positioned to influence a variety of emotional and cognitive functions. In hippocampal field CA1, the amygdala innervated some calretinin neurons, which disinhibit excitatory neurons. By contrast, in CA3 the amygdala innervated calretinin as well as some of the powerful parvalbumin inhibitory neurons and may help balance the activity of neural ensembles to allow social interactions, learning, and memory. These results suggest that when the amygdala is hyperactive during emotional upheaval, it strongly activates excitatory hippocampal neurons and parvalbumin inhibitory neurons in CA3, which can suppress nearby neurons that receive weaker input from other sources, biasing the passage of stimuli with high emotional import and leading to generalized fear.
杏仁核通过影响学习和记忆的途径向海马体投射,这些途径涉及情感或社交刺激。我们研究了恒河猴两性中仍未知的杏仁核终末模式及其在后海马体中的突触后靶标,从系统到突触进行研究。杏仁核强烈地支配着角回的腔隙分子层和前回前部。在海马体的后部分散的终末支配着锥体和放射层,位于副下托/CA1 交界处。这些终末比周围神经胶质中的其他传入纤维更大,使杏仁核能够从前部影响海马体的输入,并从后部影响其输出。大多数杏仁核末梢(76-80%)支配兴奋性海马神经元的棘突,其余的大多数支配假定的抑制性神经元,这些神经元通过形态学和用 parvalbumin 或 calretinin 标记来识别,这些神经元区分了海马体抑制性神经元的非重叠神经化学类。在 CA1 中,杏仁核轴突支配一些 calretinin 神经元,这些神经元抑制锥体神经元。相比之下,在 CA3 中,杏仁核支配 calretinin 和 parvalbumin 神经元;后者强烈抑制附近的兴奋性神经元。在 CA3 中,杏仁核途径还在兴奋性神经元上形成紧密间隔的双重突触。CA3 中的强兴奋性突触可能促进情感上下文的表示,并触发与记忆巩固相关的尖波涟漪。当杏仁核在创伤事件中过度激活时,CA3 中兴奋性神经元的特殊支配和强大的 parvalbumin 抑制性神经元可能允许抑制接收较弱非杏仁核输入的附近神经元的活动,导致高度带电的情感刺激和广泛的恐惧的偏置传递。来自杏仁核的强途径靶向海马体的前部,而其后部区域则较弱,从而影响各种情感和认知功能。在海马体 CA1 场中,杏仁核支配一些 calretinin 神经元,这些神经元抑制兴奋性神经元。相比之下,在 CA3 中,杏仁核支配 calretinin 以及一些强大的 parvalbumin 抑制性神经元,这可能有助于平衡神经群的活动,以允许社交互动、学习和记忆。这些结果表明,当杏仁核在情绪动荡期间过度活跃时,它会强烈激活 CA3 中的兴奋性海马神经元和 parvalbumin 抑制性神经元,从而抑制来自其他来源的较弱输入的附近神经元,偏置具有高情感重要性的刺激的传递,并导致广泛的恐惧。