Ambrožič Bojan, Prašnikar Anže, Hodnik Nejc, Kostevšek Nina, Likozar Blaž, Rožman Kristina Žužek, Šturm Sašo
Jožef Stefan Institute , Department for Nanostructured Materials , Jamova 39 , Ljubljana , Slovenia . Email:
Jožef Stefan International Postgraduate School , Jamova 39 , Ljubljana , Slovenia.
Chem Sci. 2019 Aug 16;10(38):8735-8743. doi: 10.1039/c9sc02227a. eCollection 2019 Oct 14.
With Liquid-Cell Transmission Electron Microscopy (LCTEM) we can observe the kinetic processes taking place in nanoscale materials that are in a solvated environment. However, the beam-driven solvent radiolysis, which results from the microscope's high-energy electron beam, can dramatically influence the dynamics of the system. Recent research suggests that radical-induced redox chemistry can be used to investigate the various redox-driven dynamics for a wide range of functional nanomaterials. In view of this, the interplay between the formation of various highly reactive radiolysis species and the nanomaterials under investigation needs to be quantified in order to formulate new strategies for nanomaterials research. We have developed a comprehensive radiolysis model by using the electron-dose rate, the temperature of the solvent, the H and O gas saturation concentrations and the pH values as the key variables. These improved kinetic models make it possible to simulate the material's specific radical-induced redox reactions. As in the case of the Au model system, the kinetic models are presented using Temperature/Dose-rate Redox potential (TDR) diagrams, which indicate the equilibrium [Au]/[Au] concentration ratios that are directly related to the temperature-/dose-rate-dependent precipitation or dissolution regions of the Au nanoparticles. Our radiolysis and radical-induced redox models were successfully verified using previously reported data from low-dose experiments with γ radiation and experimentally TDR-dependent LCTEM. The presented study represents a holistic approach to the radical-induced redox chemistry in LCTEM, including the complex kinetics of the radiolysis species and their influence on the redox chemistry of the materials under investigation, which are represented here by Au nanoparticles.
利用液池透射电子显微镜(LCTEM),我们可以观察处于溶剂化环境中的纳米级材料中发生的动力学过程。然而,显微镜的高能电子束导致的束驱动溶剂辐射分解会极大地影响系统的动力学。最近的研究表明,自由基诱导的氧化还原化学可用于研究各种功能纳米材料的各种氧化还原驱动的动力学。有鉴于此,需要对各种高活性辐射分解物种的形成与被研究纳米材料之间的相互作用进行量化,以便制定纳米材料研究的新策略。我们通过将电子剂量率、溶剂温度、H和O气体饱和浓度以及pH值作为关键变量,开发了一个综合辐射分解模型。这些改进的动力学模型使得模拟材料特定的自由基诱导的氧化还原反应成为可能。就金模型系统而言,动力学模型使用温度/剂量率氧化还原电位(TDR)图来呈现,该图表明了与金纳米颗粒的温度/剂量率依赖性沉淀或溶解区域直接相关的平衡[Au]/[Au]浓度比。我们的辐射分解和自由基诱导的氧化还原模型使用先前报道的低剂量γ辐射实验数据以及实验性的TDR依赖性LCTEM成功得到验证。本研究代表了一种对LCTEM中自由基诱导的氧化还原化学的整体方法,包括辐射分解物种的复杂动力学及其对被研究材料(此处以金纳米颗粒为代表)氧化还原化学的影响。