Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya.
Lancaster Medical School, Lancaster University, Lancaster, UK.
Malar J. 2018 Sep 26;17(1):340. doi: 10.1186/s12936-018-2489-9.
Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 36 years data on Plasmodium falciparum prevalence is used to understand the past and chart a future for malaria control in Kenya by confidently highlighting areas within important policy relevant thresholds to allow either the revision of malaria strategies to those that support pre-elimination or those that require additional control efforts.
Plasmodium falciparum parasite prevalence (PfPR) surveys undertaken in Kenya between 1980 and 2015 were assembled. A spatio-temporal geostatistical model was fitted to predict annual malaria risk for children aged 2-10 years (PfPR) at 1 × 1 km spatial resolution from 1990 to 2015. Changing PfPR was compared against plausible explanatory variables. The fitted model was used to categorize areas with varying degrees of prediction probability for two important policy thresholds PfPR < 1% (non-exceedance probability) or ≥ 30% (exceedance probability).
5020 surveys at 3701 communities were assembled. Nationally, there was an 88% reduction in the mean modelled PfPR from 21.2% (ICR: 13.8-32.1%) in 1990 to 2.6% (ICR: 1.8-3.9%) in 2015. The most significant decline began in 2003. Declining prevalence was not equal across the country and did not directly coincide with scaled vector control coverage or changing therapeutics. Over the period 2013-2015, of Kenya's 47 counties, 23 had an average PfPR of < 1%; four counties remained ≥ 30%. Using a metric of 80% probability, 8.5% of Kenya's 2015 population live in areas with PfPR ≥ 30%; while 61% live in areas where PfPR is < 1%.
Kenya has made substantial progress in reducing the prevalence of malaria over the last 26 years. Areas today confidently and consistently with < 1% prevalence require a revised approach to control and a possible consideration of strategies that support pre-elimination. Conversely, there remains several intractable areas where current levels and approaches to control might be inadequate. The modelling approaches presented here allow the Ministry of Health opportunities to consider data-driven model certainty in defining their future spatial targeting of resources.
空间和时间疟疾风险图是监测控制效果、评估重新定位疟疾干预措施和投资重点地区的重要工具,以在疟疾流行国家。在这里,分析 36 年来恶性疟原虫流行率的数据,通过有信心地突出重要政策相关阈值内的区域,了解肯尼亚疟疾控制的过去和规划未来,从而支持向消除前疟疾策略或需要额外控制努力的策略进行修订。
组装了肯尼亚 1980 年至 2015 年期间进行的恶性疟原虫寄生虫流行率(PfPR)调查。拟合时空地理统计学模型,以预测 1990 年至 2015 年期间 2-10 岁儿童的年疟疾风险(PfPR),空间分辨率为 1×1km。将变化的 PfPR 与可能的解释变量进行比较。使用拟合模型将不同预测概率的区域划分为两个重要政策阈值 PfPR<1%(非超标概率)或≥30%(超标概率)的类别。
组装了 5020 项调查,涉及 3701 个社区。全国范围内,模型模拟的平均 PfPR 从 1990 年的 21.2%(置信区间:13.8-32.1%)下降到 2015 年的 2.6%(置信区间:1.8-3.9%),下降了 88%。最显著的下降始于 2003 年。全国范围内的流行率下降并不均衡,也没有直接与扩大的病媒控制覆盖率或改变治疗方法相吻合。在 2013-2015 年期间,肯尼亚的 47 个县中,有 23 个县的平均 PfPR<1%;四个县仍≥30%。使用 80%概率的指标,2015 年肯尼亚 8.5%的人口生活在 PfPR≥30%的地区;而 61%的人口生活在 PfPR<1%的地区。
肯尼亚在过去 26 年中在降低疟疾流行率方面取得了重大进展。如今,有信心和一致性地将低于 1%的患病率视为控制的一种新方法,并可能考虑支持消除前疟疾的策略。相反,仍有几个棘手的地区,目前的水平和控制方法可能不足。这里提出的建模方法使卫生部有机会考虑数据驱动的模型确定性,以确定未来资源的空间定位。