Suppr超能文献

用于三维单粒子建模且视角分布不均匀的矩量法。

Method of moments for 3D single particle modeling with non-uniform distribution of viewing angles.

作者信息

Sharon Nir, Kileel Joe, Khoo Yuehaw, Landa Boris, Singer Amit

机构信息

School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States of America.

出版信息

Inverse Probl. 2020 Apr;36(4). doi: 10.1088/1361-6420/ab6139. Epub 2020 Feb 26.

Abstract

Single-particle reconstruction in cryo-electron microscopy (cryo-EM) is an increasingly popular technique for determining the 3D structure of a molecule from several noisy 2D projections images taken at unknown viewing angles. Most reconstruction algorithms require a low-resolution initialization for the 3D structure, which is the goal of modeling. Suggested by Zvi Kam in 1980, the method of moments (MoM) offers one approach, wherein low-order statistics of the 2D images are computed and a 3D structure is estimated by solving a system of polynomial equations. Unfortunately, Kam's method suffers from restrictive assumptions, most notably that viewing angles should be distributed uniformly. Often unrealistic, uniformity entails the computation of higher-order correlations, as in this case first and second moments fail to determine the 3D structure. In the present paper, we remove this hypothesis, by permitting an unknown, non-uniform distribution of viewing angles in MoM. Perhaps surprisingly, we show that this case is than the uniform case, as now first and second moments generically suffice to determine low-resolution expansions of the molecule. In the idealized setting of a known, non-uniform distribution, we find an efficient provable algorithm inverting first and second moments. For unknown, non-uniform distributions, we use non-convex optimization methods to solve for both the molecule and distribution.

摘要

冷冻电子显微镜(cryo-EM)中的单颗粒重建是一种越来越受欢迎的技术,用于从几个以未知视角拍摄的有噪声的二维投影图像中确定分子的三维结构。大多数重建算法需要对三维结构进行低分辨率初始化,这是建模的目标。1980年由兹维·卡姆提出的矩量法(MoM)提供了一种方法,其中计算二维图像的低阶统计量,并通过求解多项式方程组来估计三维结构。不幸的是,卡姆的方法存在一些限制性假设,最显著的是视角应均匀分布。均匀性通常不现实,因为它需要计算高阶相关性,在这种情况下,一阶和二阶矩无法确定三维结构。在本文中,我们通过在矩量法中允许未知的、非均匀的视角分布来消除这一假设。也许令人惊讶的是,我们表明这种情况比均匀情况更容易,因为现在一阶和二阶矩通常足以确定分子的低分辨率展开。在已知非均匀分布的理想化设置中,我们找到了一种有效的可证明算法来反转一阶和二阶矩。对于未知的非均匀分布,我们使用非凸优化方法来求解分子和分布。

相似文献

1
Method of moments for 3D single particle modeling with non-uniform distribution of viewing angles.
Inverse Probl. 2020 Apr;36(4). doi: 10.1088/1361-6420/ab6139. Epub 2020 Feb 26.
2
Orthogonal Matrix Retrieval In Cryo-Electron Microscopy.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:1048-1052. doi: 10.1109/ISBI.2015.7164051.
3
Moment-based metrics for molecules computable from cryogenic electron microscopy images.
Biol Imaging. 2024 Feb 23;4:e3. doi: 10.1017/S2633903X24000023. eCollection 2024.
4
Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.
Protein Sci. 2018 Jan;27(1):51-61. doi: 10.1002/pro.3266. Epub 2017 Sep 6.
5
A Fast Image Alignment Approach for 2D Classification of Cryo-EM Images Using Spectral Clustering.
Curr Issues Mol Biol. 2021 Oct 18;43(3):1652-1668. doi: 10.3390/cimb43030117.
6
CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D Molecular Volumes from Real Cryo-EM Images.
Comput Vis ECCV. 2022 Oct;13681:540-557. doi: 10.1007/978-3-031-19803-8_32. Epub 2022 Oct 23.
7
Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction.
BMC Bioinformatics. 2020 Dec 28;21(Suppl 21):534. doi: 10.1186/s12859-020-03885-9.
9
A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.
Structure. 2016 Jun 7;24(6):988-96. doi: 10.1016/j.str.2016.04.006. Epub 2016 May 12.
10
COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:200-204. doi: 10.1109/ISBI.2015.7163849.

引用本文的文献

1
MAXIMUM LIKELIHOOD FOR HIGH-NOISE GROUP ORBIT ESTIMATION AND SINGLE-PARTICLE CRYO-EM.
Ann Stat. 2024 Feb;52(1):52-77. doi: 10.1214/23-aos2292. Epub 2024 Mar 7.
2
The -invariant graph Laplacian Part I: Convergence rate and eigendecomposition.
Appl Comput Harmon Anal. 2024 Jul;71. doi: 10.1016/j.acha.2024.101637. Epub 2024 Feb 21.

本文引用的文献

1
Non-uniformity of projection distributions attenuates resolution in Cryo-EM.
Prog Biophys Mol Biol. 2020 Jan;150:160-183. doi: 10.1016/j.pbiomolbio.2019.09.002. Epub 2019 Sep 13.
2
High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM.
Nat Commun. 2019 Mar 4;10(1):1032. doi: 10.1038/s41467-019-08991-8.
3
Structural Variability from Noisy Tomographic Projections.
SIAM J Imaging Sci. 2018;11(2):1441-1492. doi: 10.1137/17M1153509. Epub 2018 May 31.
4
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model.
Ann Stat. 2018 Aug;46(4):1742-1778. doi: 10.1214/17-AOS1601. Epub 2018 Jun 27.
5
Structure determination from single molecule X-ray scattering with three photons per image.
Nat Commun. 2018 Jun 18;9(1):2375. doi: 10.1038/s41467-018-04830-4.
6
Bispectrum Inversion with Application to Multireference Alignment.
IEEE Trans Signal Process. 2018 Feb 15;66(4):1037-1050. doi: 10.1109/TSP.2017.2775591. Epub 2017 Nov 20.
7
Steerable Principal Components for Space-Frequency Localized Images.
SIAM J Imaging Sci. 2017;10(2):508-534. doi: 10.1137/16M1085334. Epub 2017 Apr 13.
8
Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy.
Nat Commun. 2017 Sep 20;8(1):629. doi: 10.1038/s41467-017-00782-3.
9
Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.
Protein Sci. 2018 Jan;27(1):51-61. doi: 10.1002/pro.3266. Epub 2017 Sep 6.
10
Opinion: hazards faced by macromolecules when confined to thin aqueous films.
Biophys Rep. 2017;3(1):1-7. doi: 10.1007/s41048-016-0026-3. Epub 2016 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验