Suppr超能文献

评估未培养的微生物主体

Sizing Up the Uncultured Microbial Majority.

作者信息

Hug Laura A

机构信息

Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.

出版信息

mSystems. 2018 Sep 25;3(5). doi: 10.1128/mSystems.00185-18. eCollection 2018 Sep-Oct.

Abstract

Predicting the total number of microbial cells on Earth and exploring the full diversity of life are fundamental research concepts that have undergone paradigm shifts in the genomic era. In this issue, Lloyd and colleagues (K. G. Lloyd, A. D. Steen, J. L. Ladau, J. Yin, and L. Crosby, mSystems 3:e00055-18, https://doi.org/10.1128/mSystems.00055-18, 2018) present results that combine these two concepts by estimating the total diversity of all cells from Earth's environments. Leveraging publicly available amplicon, metagenomic, and metatranscriptomic datasets, they determined that nearly all environments are dominated by uncultured lineages, with the exception of humans and human-associated habitats. They define a new concept: phylogenetically diverse noncultured cells (PDNC). Unlike viable but nonculturable cells (VBNC), PDNC are microorganisms for which traditional isolation techniques may never succeed. Lloyd et al. estimate that the majority of microorganisms in Earth's ecosystems may be PDNC and conclude that culture-independent methods combined with innovative culturing techniques may be required to understand the ecology and physiology of these abundant and divergent microorganisms.

摘要

预测地球上微生物细胞的总数以及探索生命的全部多样性是基因组时代经历了范式转变的基础研究概念。在本期中,劳埃德及其同事(K.G.劳埃德、A.D.斯汀、J.L.拉道、J.尹和L.克罗斯比,《mSystems》3:e00055 - 18,https://doi.org/10.1128/mSystems.00055 - 18,2018年)通过估计地球环境中所有细胞的总多样性,展示了结合这两个概念的研究结果。他们利用公开可用的扩增子、宏基因组和宏转录组数据集,确定除了人类和与人类相关的栖息地外,几乎所有环境都由未培养的谱系主导。他们定义了一个新概念:系统发育多样的未培养细胞(PDNC)。与活的但不可培养的细胞(VBNC)不同,PDNC是传统分离技术可能永远无法成功分离的微生物。劳埃德等人估计,地球生态系统中的大多数微生物可能是PDNC,并得出结论,可能需要将非培养方法与创新培养技术相结合,才能了解这些数量众多且差异巨大的微生物的生态学和生理学特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7770/6156272/b6cedd6063d2/sys0051822710001.jpg

相似文献

1
Sizing Up the Uncultured Microbial Majority.
mSystems. 2018 Sep 25;3(5). doi: 10.1128/mSystems.00185-18. eCollection 2018 Sep-Oct.
3
Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes.
mSystems. 2018 Sep 25;3(5). doi: 10.1128/mSystems.00055-18. eCollection 2018 Sep-Oct.
4
Metagenomics: Concept, methodology, ecological inference and recent advances.
Biotechnol J. 2009 Apr;4(4):480-94. doi: 10.1002/biot.200800201.
5
Metagenomics: genomic analysis of microbial communities.
Annu Rev Genet. 2004;38:525-52. doi: 10.1146/annurev.genet.38.072902.091216.
7
Changes in the Active, Dead, and Dormant Microbial Community Structure across a Pleistocene Permafrost Chronosequence.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02646-18. Print 2019 Apr 1.
8
From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems.
Cell Mol Life Sci. 2015 Nov;72(22):4287-308. doi: 10.1007/s00018-015-2004-1. Epub 2015 Aug 9.
9
Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.
J Microbiol Methods. 2018 Nov;154:14-18. doi: 10.1016/j.mimet.2018.09.020. Epub 2018 Oct 1.
10
Metagenomic Insights Into the Diversity of Halophilic Microorganisms Indigenous to the Karak Salt Mine, Pakistan.
Front Microbiol. 2020 Jul 14;11:1567. doi: 10.3389/fmicb.2020.01567. eCollection 2020.

引用本文的文献

1
Unveiling the impact of 16S rRNA gene intergenomic variation on primer design and gut microbiome profiling.
Front Microbiol. 2025 May 2;16:1573920. doi: 10.3389/fmicb.2025.1573920. eCollection 2025.
2
A suite of ddPCR assays targeting microbial pathogens for improved management of shellfish aquaculture.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0214924. doi: 10.1128/aem.02149-24. Epub 2025 Apr 2.
3
Assembling bacterial puzzles: piecing together functions into microbial pathways.
NAR Genom Bioinform. 2024 Aug 24;6(3):lqae109. doi: 10.1093/nargab/lqae109. eCollection 2024 Sep.
7
Above- and below-ground microbiome in the annual developmental cycle of two olive tree varieties.
FEMS Microbes. 2023 Jan 6;4:xtad001. doi: 10.1093/femsmc/xtad001. eCollection 2023.
8
Bacterial polysaccharides-A big source for prebiotics and therapeutics.
Front Nutr. 2022 Nov 3;9:1031935. doi: 10.3389/fnut.2022.1031935. eCollection 2022.
9
Asgard archaea in saline environments.
Extremophiles. 2022 Jun 28;26(2):21. doi: 10.1007/s00792-022-01266-z.
10
The Axenic and Gnotobiotic Mosquito: Emerging Models for Microbiome Host Interactions.
Front Microbiol. 2021 Jul 12;12:714222. doi: 10.3389/fmicb.2021.714222. eCollection 2021.

本文引用的文献

1
Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes.
mSystems. 2018 Sep 25;3(5). doi: 10.1128/mSystems.00055-18. eCollection 2018 Sep-Oct.
2
A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life.
Nat Biotechnol. 2018 Nov;36(10):996-1004. doi: 10.1038/nbt.4229. Epub 2018 Aug 27.
3
The biomass distribution on Earth.
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6506-6511. doi: 10.1073/pnas.1711842115. Epub 2018 May 21.
4
Rokubacteria: Genomic Giants among the Uncultured Bacterial Phyla.
Front Microbiol. 2017 Nov 28;8:2264. doi: 10.3389/fmicb.2017.02264. eCollection 2017.
5
6
A new view of the tree of life.
Nat Microbiol. 2016 Apr 11;1:16048. doi: 10.1038/nmicrobiol.2016.48.
7
Synthesis of phylogeny and taxonomy into a comprehensive tree of life.
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12764-9. doi: 10.1073/pnas.1423041112. Epub 2015 Sep 18.
8
Unusual biology across a group comprising more than 15% of domain Bacteria.
Nature. 2015 Jul 9;523(7559):208-11. doi: 10.1038/nature14486. Epub 2015 Jun 15.
9
Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling.
Curr Biol. 2015 Mar 16;25(6):690-701. doi: 10.1016/j.cub.2015.01.014. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验