Suppr超能文献

一种用于改进细菌群落分类学分析的多扩增子16S rRNA测序及分析方法。

A multi-amplicon 16S rRNA sequencing and analysis method for improved taxonomic profiling of bacterial communities.

作者信息

Schriefer Andrew E, Cliften Paul F, Hibberd Matthew C, Sawyer Christopher, Brown-Kennerly Victoria, Burcea Lauren, Klotz Elliott, Crosby Seth D, Gordon Jeffrey I, Head Richard D

机构信息

Genome Technology Access Center, Department of Genetics, Washington University School of Medicine, 63110 St. Louis, MO, USA.

The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

J Microbiol Methods. 2018 Nov;154:6-13. doi: 10.1016/j.mimet.2018.09.019. Epub 2018 Sep 29.

Abstract

Metagenomic sequencing of bacterial samples has become the gold standard for profiling microbial populations, but 16S rRNA profiling remains widely used due to advantages in sample throughput, cost, and sensitivity even though the approach is hampered by primer bias and lack of specificity. We hypothesized that a hybrid approach, that combined targeted PCR amplification with high-throughput sequencing of multiple regions of the genome, would capture many of the advantages of both approaches. We developed a method that identifies and quantifies members of bacterial communities through simultaneous analysis of multiple variable regions of the bacterial 16S rRNA gene. The method combines high-throughput microfluidics for PCR amplification, short read DNA sequencing, and a custom algorithm named MVRSION (Multiple 16S Variable Region Species-Level IdentificatiON) for optimizing taxonomic assignment. MVRSION performance was compared to single variable region analyses (V3 or V4) of five synthetic mixtures of human gut bacterial strains using existing software (QIIME), and the results of community profiling by shotgun sequencing (COPRO-Seq) of fecal DNA samples collected from gnotobiotic mice colonized with a defined, phylogenetically diverse consortium of human gut bacterial strains. Positive predictive values for MVRSION ranged from 65%-91% versus 44%-61% for single region QIIME analyses (p < .01, p < .001), while the abundance estimate r for MVRSION compared to COPRO-Seq was 0.77 vs. 0.46 and 0.45 for V3-QIIME and V4-QIIME, respectively. MVRSION represents a generally applicable tool for taxonomic classification that is superior to single-region 16S rRNA methods, resource efficient, highly scalable for assessing the microbial composition of up to thousands of samples concurrently, with multiple applications ranging from whole community profiling to targeted tracking of organisms of interest in diverse habitats as a function of specified variables/perturbations.

摘要

细菌样本的宏基因组测序已成为分析微生物群落的金标准,但尽管16S rRNA分析方法受到引物偏差和特异性不足的限制,由于其在样本通量、成本和灵敏度方面的优势,仍被广泛使用。我们推测,一种将靶向PCR扩增与基因组多个区域的高通量测序相结合的混合方法,将兼具这两种方法的诸多优点。我们开发了一种方法,通过同时分析细菌16S rRNA基因的多个可变区来识别和量化细菌群落成员。该方法将用于PCR扩增的高通量微流控技术、短读长DNA测序以及一种名为MVRSION(多16S可变区物种水平鉴定)的定制算法相结合,以优化分类归属。使用现有软件(QIIME),将MVRSION的性能与五种人类肠道细菌菌株合成混合物的单可变区分析(V3或V4)进行比较,并与从定殖有明确的、系统发育多样的人类肠道细菌菌株联合体的悉生小鼠收集的粪便DNA样本进行鸟枪法测序(COPRO-Seq)的群落分析结果进行比较。MVRSION的阳性预测值范围为65%-91%,而单区域QIIME分析的阳性预测值为44%-61%(p<0.01,p<0.001),与COPRO-Seq相比,MVRSION的丰度估计r为0.77,而V3-QIIME和V4-QIIME分别为0.46和0.45。MVRSION是一种普遍适用的分类工具,优于单区域16S rRNA方法,资源高效,高度可扩展,可同时评估多达数千个样本的微生物组成,具有多种应用,从整个群落分析到根据特定变量/扰动对不同生境中感兴趣的生物体进行靶向追踪。

相似文献

10
High-throughput DNA extraction strategy for fecal microbiome studies.高通量粪便微生物组研究的 DNA 提取策略。
Microbiol Spectr. 2024 Jun 4;12(6):e0293223. doi: 10.1128/spectrum.02932-23. Epub 2024 May 15.

引用本文的文献

本文引用的文献

4
The long-term stability of the human gut microbiota.人类肠道微生物组的长期稳定性。
Science. 2013 Jul 5;341(6141):1237439. doi: 10.1126/science.1237439.
8
Search and clustering orders of magnitude faster than BLAST.比 BLAST 快几个数量级的搜索和聚类。
Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验