UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University and SeroScience Ltd, Nagyvárad tér 4, 1089 Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary.
Adv Drug Deliv Rev. 2018 Nov-Dec;136-137:82-96. doi: 10.1016/j.addr.2018.09.012. Epub 2018 Sep 29.
Nanotechnology provides many solutions to improve conventional drug delivery and has a unique niche in the areas related to the specific targeting of the immune system, such as immunotherapies and vaccines. Preclinical studies in this field rely heavily on the combination of in vitro and in vivo methods to assess the safety and efficacy of nanotechnology platforms, nanoparticle-formulated drugs, and vaccines. While certain types of toxicities can be evaluated in vitro and good in vitro-in vivo correlation has been demonstrated for such tests, animal studies are still needed to address complex biological questions and, therefore, provide a unique contribution to establishing nanoparticle safety and efficacy profiles. The genetic, metabolic, mechanistic, and phenotypic diversity of currently available animal models often complicates both the animal choice and the interpretation of the results. This review summarizes current knowledge about differences in the immune system function and immunological responses of animals commonly used in preclinical studies of nanomaterials. We discuss challenges, highlight current gaps, and propose recommendations for animal model selection to streamline preclinical analysis of nanotechnology formulations.
纳米技术为改善传统药物输送提供了许多解决方案,并在与免疫系统特定靶向相关的领域(如免疫疗法和疫苗)具有独特的地位。该领域的临床前研究严重依赖于体外和体内方法的结合,以评估纳米技术平台、纳米颗粒制剂药物和疫苗的安全性和有效性。虽然某些类型的毒性可以在体外进行评估,并且已经证明此类测试具有良好的体外-体内相关性,但仍需要动物研究来解决复杂的生物学问题,因此为建立纳米颗粒的安全性和有效性概况提供了独特的贡献。目前可用的动物模型在遗传、代谢、机制和表型方面的多样性常常使动物的选择和结果的解释变得复杂。这篇综述总结了目前关于常用于纳米材料临床前研究的动物的免疫系统功能和免疫反应的差异的知识。我们讨论了挑战,突出了当前的差距,并为动物模型选择提出了建议,以简化纳米技术制剂的临床前分析。