Suppr超能文献

基于分形维分割和高斯过程支持向量机分类的癫痫自动检测

Automatic epilepsy detection using fractal dimensions segmentation and GP-SVM classification.

作者信息

Jirka Jakub, Prauzek Michal, Krejcar Ondrej, Kuca Kamil

机构信息

Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava Poruba, Czech Republic.

Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic,

出版信息

Neuropsychiatr Dis Treat. 2018 Sep 21;14:2439-2449. doi: 10.2147/NDT.S167841. eCollection 2018.

Abstract

OBJECTIVE

The most important part of signal processing for classification is feature extraction as a mapping from original input electroencephalographic (EEG) data space to new features space with the biggest class separability value. Features are not only the most important, but also the most difficult task from the classification process as they define input data and classification quality. An ideal set of features would make the classification problem trivial. This article presents novel methods of feature extraction processing and automatic epilepsy seizure classification combining machine learning methods with genetic evolution algorithms.

METHODS

Classification is performed on EEG data that represent electric brain activity. At first, the signal is preprocessed with digital filtration and adaptive segmentation using fractal dimensions as the only segmentation measure. In the next step, a novel method using genetic programming (GP) combined with support vector machine (SVM) confusion matrix as fitness function weight is used to extract feature vectors compressed into lower dimension space and classify the final result into ictal or interictal epochs.

RESULTS

The final application of GP-SVM method improves the discriminatory performance of a classifier by reducing feature dimensionality at the same time. Members of the GP tree structure represent the features themselves and their number is automatically decided by the compression function introduced in this paper. This novel method improves the overall performance of the SVM classification by dramatically reducing the size of input feature vector.

CONCLUSION

According to results, the accuracy of this algorithm is very high and comparable, or even superior to other automatic detection algorithms. In combination with the great efficiency, this algorithm can be used in real-time epilepsy detection applications. From the results of the algorithm's classification, we can observe high sensitivity, specificity results, except for the Generalized Tonic Clonic Seizure (GTCS). As the next step, the optimization of the compression stage and final SVM evaluation stage is in place. More data need to be obtained on GTCS to improve the overall classification score for GTCS.

摘要

目的

对于分类而言,信号处理最重要的部分是特征提取,即将原始输入脑电图(EEG)数据空间映射到具有最大类可分性值的新特征空间。特征不仅是分类过程中最重要的部分,也是最困难的任务,因为它们决定了输入数据和分类质量。一组理想的特征会使分类问题变得简单。本文提出了将机器学习方法与遗传进化算法相结合的特征提取处理和癫痫发作自动分类的新方法。

方法

对代表脑电活动的EEG数据进行分类。首先,使用数字滤波和以分形维数作为唯一分割度量的自适应分割对信号进行预处理。接下来,采用一种将遗传编程(GP)与支持向量机(SVM)混淆矩阵作为适应度函数权重相结合的新方法,提取压缩到低维空间的特征向量,并将最终结果分类为发作期或发作间期时段。

结果

GP - SVM方法的最终应用在降低特征维度的同时提高了分类器的判别性能。GP树结构的成员代表特征本身,其数量由本文引入的压缩函数自动确定。这种新方法通过大幅减小输入特征向量的大小提高了SVM分类的整体性能。

结论

根据结果,该算法的准确率非常高,与其他自动检测算法相当,甚至更优。结合其高效性,该算法可用于实时癫痫检测应用。从算法的分类结果来看,除了全身强直阵挛发作(GTCS)外,我们可以观察到高灵敏度、高特异性的结果。下一步是对压缩阶段和最终的SVM评估阶段进行优化。需要获取更多关于GTCS的数据以提高GTCS的整体分类得分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2325/6157576/07e5af9555c6/ndt-14-2439Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验