Zhou Benjamin H, Rinehart Jeffrey D
Materials Science and Engineering Program and Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States.
ACS Cent Sci. 2018 Sep 26;4(9):1222-1227. doi: 10.1021/acscentsci.8b00399. Epub 2018 Aug 22.
The phenomenon of granular magnetoresistance offers the promise of rapid functional materials discovery and high-sensitivity, low-cost sensing technology. Since its discovery over 25 years ago, a major challenge has been the preparation of solids composed of well-characterized, uniform, nanoscale magnetic domains. Rapid advances in colloidal nanochemistry now facilitate the study of more complex and finely controlled materials, enabling the rigorous exploration of the fundamental nature and maximal capabilities of this intriguing class of spintronic materials. We present the first study of size-dependence in granular magnetoresistance using colloidal nanoparticles. These data demonstrate a strongly nonlinear size-dependent magnetoresistance with smaller particles having strong / ∼ 18% at 300 K and larger particles showing a 3-fold decline. Importantly, this indicates that CoFeO can act as an effective room temperature granular magnetoresistor and that neither a high superparamagnetic blocking temperature nor a low overall resistance are determining factors in viable magnetoresistance values for sensing applications. These results demonstrate the promise of wider exploration of nontraditional granular structures composed of nanomaterials, molecule-based magnets, and metal-organic frameworks.
颗粒磁电阻现象为快速发现功能材料以及实现高灵敏度、低成本传感技术带来了希望。自25年前被发现以来,一个主要挑战一直是制备由特征明确、均匀的纳米级磁畴组成的固体。胶体纳米化学的迅速发展现在有助于对更复杂且精细可控的材料进行研究,从而能够严格探索这类有趣的自旋电子材料的基本性质和最大性能。我们展示了首次使用胶体纳米颗粒对颗粒磁电阻尺寸依赖性的研究。这些数据表明颗粒磁电阻具有强烈的非线性尺寸依赖性,较小颗粒在300 K时具有很强的磁电阻(约18%),而较大颗粒的磁电阻则下降了3倍。重要的是,这表明CoFeO可作为有效的室温颗粒磁阻器,并且对于传感应用而言,既不是高超顺磁阻挡温度也不是低总电阻是可行磁电阻值的决定因素。这些结果表明了对由纳米材料、分子基磁体和金属有机框架组成的非传统颗粒结构进行更广泛探索的前景。