SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 440-746, Korea.
Nanoscale. 2018 Oct 21;10(39):18758-18766. doi: 10.1039/c8nr06020g. Epub 2018 Oct 2.
While preparing uniform dielectric layers on two-dimensional (2D) materials is a key device architecture requirement to achieve next-generation 2D devices, conventional deposition or transfer approaches have been so far limited by their high cost, fabrication complexity, and especially poor dielectric/2D material interface quality. Here, we demonstrate that HfO, a high-K dielectric, can be prepared on the top surface of 2D HfS through plasma oxidation, which results in a heterostructure composed of a 2D van der Waals semiconductor and its insulating native oxide. A highly uniform dielectric layer with a controlled thickness can be prepared; the possibility of unlimited layer-by-layer oxidation further differentiates our work from previous attempts on other 2D semiconducting materials, which exhibit self-limited oxidation up to only a few layers. High resolution transmission electron microscopy was used to show that the converted HfO/HfS hybrid structure is of high quality with an atomically abrupt, impurity- and defect-free interface. Density functional theory calculations show that the unlimited layer-by-layer oxidation occurs because oxygen atoms can barrierlessly penetrate into the HfS surface and the extracted sulfur atoms are absorbed into the oxygen vacancy sites within HfO under O-rich conditions. A top-gated field-effect transistor fabricated with the converted HfO/HfS hybrid structure was found to exhibit a low interface trap density D of 6 × 10 cm eV between the HfS channel and the converted HfO dielectric, and a high on/off current ratio above 10. Our approach provides a low cost, simple, and ultraclean manufacturing technique for integrating 2D material into device applications.
在二维(2D)材料上制备均匀的介电层是实现下一代 2D 器件的关键器件架构要求,但传统的沉积或转移方法迄今为止受到其高成本、制造复杂性以及特别是较差的介电体/2D 材料界面质量的限制。在这里,我们证明 HfO,一种高介电常数材料,可以通过等离子体氧化在 2D HfS 的顶表面上制备,这导致了由 2D 范德华半导体及其绝缘本征氧化物组成的异质结构。可以制备具有受控厚度的高度均匀的介电层;通过无限层状氧化的可能性进一步将我们的工作与以前在其他 2D 半导体材料上的尝试区分开来,以前的尝试在仅氧化几个层后表现出自限氧化。高分辨率透射电子显微镜用于表明转化的 HfO/HfS 混合结构具有高质量,具有原子突然、无杂质和无缺陷的界面。密度泛函理论计算表明,无限层状氧化的发生是因为氧原子可以无障碍地穿透 HfS 表面,并且在富氧条件下,提取的硫原子被吸收到 HfO 中的氧空位位中。用转化的 HfO/HfS 混合结构制造的顶栅场效应晶体管被发现表现出在 HfS 沟道和转化的 HfO 介电层之间的低界面陷阱密度 D 为 6×10 cm eV,并且导通/关断电流比高于 10。我们的方法为将 2D 材料集成到器件应用中提供了一种低成本、简单和超清洁的制造技术。