Suppr超能文献

控制 HfS 的本征氧化用于基于 2D 材料的闪存和人工突触。

Controlling Native Oxidation of HfS for 2D Materials Based Flash Memory and Artificial Synapse.

机构信息

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China.

Department of Physics, National University of Singapore, Singapore 117542, Singapore.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10639-10649. doi: 10.1021/acsami.0c22561. Epub 2021 Feb 19.

Abstract

Two-dimensional (2D) materials based artificial synapses are important building blocks for the brain-inspired computing systems that are promising in handling large amounts of informational data with high energy-efficiency in the future. However, 2D devices usually rely on deposited or transferred insulators as the dielectric layer, resulting in various challenges in device compatibility and fabrication complexity. Here, we demonstrate a controllable and reliable oxidation process to turn 2D semiconductor HfS into native oxide, HfO, which shows good insulating property and clean interface with HfS. We then incorporate the HfO/HfS heterostructure into a flash memory device, achieving a high on/off current ratio of ∼10, a large memory window over 60 V, good endurance, and a long retention time over 10 seconds. In particular, the memory device can work as an artificial synapse to emulate basic synaptic functions and feature good linearity and symmetry in conductance change during long-term potentiation/depression processes. A simulated artificial neural network based on our synaptic device achieves a high accuracy of ∼88% in MNIST pattern recognition. Our work provides a simple and effective approach for integrating high- dielectrics into 2D material-based memory and synaptic devices.

摘要

基于二维(2D)材料的人工突触对于类脑计算系统至关重要,该系统有望在未来以高能效处理大量信息数据。然而,2D 器件通常依赖沉积或转移的绝缘体作为介电层,这导致器件兼容性和制造复杂性方面存在各种挑战。在这里,我们展示了一种可控制且可靠的氧化过程,将 2D 半导体 HfS 转化为本征氧化物 HfO,其具有良好的绝缘性能和与 HfS 的清洁界面。然后,我们将 HfO/HfS 异质结构整合到闪存器件中,实现了约 10 的高导通/截止电流比、超过 60V 的大存储窗口、良好的耐久性和超过 10 秒的长保持时间。特别是,该存储器件可用作人工突触来模拟基本的突触功能,并且在长期增强/抑制过程中具有良好的线性和对称性的电导变化。基于我们的突触器件的模拟人工神经网络在 MNIST 模式识别中实现了约 88%的高精度。我们的工作为将高介电常数集成到基于 2D 材料的存储和突触器件中提供了一种简单有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验