White K Ian, Bugris Valeria, McCarthy Andrew A, Ravelli Raimond B G, Csankó Krisztián, Cassetta Alberto, Brockhauser Sandor
Department of Molecular and Cellular Physiology, Stanford University, Campus Drive, Stanford, CA 94305, USA.
European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, Grenoble, 38042, France.
J Appl Crystallogr. 2018 Sep 13;51(Pt 5):1421-1427. doi: 10.1107/S1600576718010956. eCollection 2018 Oct 1.
The installation of multi-axis goniometers such as the ESRF/EMBL miniKappa goniometer system has allowed the increased use of sample reorientation in macromolecular crystallography. Old and newly appearing data collection methods require precision and accuracy in crystal reorientation. The proper use of such multi-axis systems has necessitated the development of rapid and easy to perform methods for establishing and evaluating device calibration. A new diffraction-based method meeting these criteria has been developed for the calibration of the motors responsible for rotational motion. This method takes advantage of crystal symmetry by comparing the orientations of a sample rotated about a given axis and checking that the magnitude of the real rotation fits the calculated angle between these two orientations. Hence, the accuracy and precision of rotational motion can be assessed. This rotation calibration procedure has been performed on several beamlines at the ESRF and other synchrotrons. Some resulting data are presented here for reference.
安装多轴测角仪,如欧洲同步辐射装置(ESRF)/欧洲分子生物学实验室(EMBL)的miniKappa测角仪系统,使得在大分子晶体学中更多地使用样品重新定向成为可能。旧的和新出现的数据收集方法都要求晶体重新定向具有高精度和高准确性。正确使用此类多轴系统需要开发快速且易于执行的方法来建立和评估设备校准。一种满足这些标准的基于衍射的新方法已被开发出来,用于校准负责旋转运动的电机。该方法通过比较围绕给定轴旋转的样品的取向,并检查实际旋转的幅度是否符合这两个取向之间计算出的角度,利用了晶体对称性。因此,可以评估旋转运动的准确性和精度。这种旋转校准程序已在ESRF的几条光束线以及其他同步加速器上执行。这里给出一些所得数据以供参考。