Parietal project-team, INRIA Saclay - Île de France, France.
Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France.
Brain. 2018 Nov 1;141(11):3179-3192. doi: 10.1093/brain/awy251.
Determining the state of consciousness in patients with disorders of consciousness is a challenging practical and theoretical problem. Recent findings suggest that multiple markers of brain activity extracted from the EEG may index the state of consciousness in the human brain. Furthermore, machine learning has been found to optimize their capacity to discriminate different states of consciousness in clinical practice. However, it is unknown how dependable these EEG markers are in the face of signal variability because of different EEG configurations, EEG protocols and subpopulations from different centres encountered in practice. In this study we analysed 327 recordings of patients with disorders of consciousness (148 unresponsive wakefulness syndrome and 179 minimally conscious state) and 66 healthy controls obtained in two independent research centres (Paris Pitié-Salpêtrière and Liège). We first show that a non-parametric classifier based on ensembles of decision trees provides robust out-of-sample performance on unseen data with a predictive area under the curve (AUC) of ~0.77 that was only marginally affected when using alternative EEG configurations (different numbers and positions of sensors, numbers of epochs, average AUC = 0.750 ± 0.014). In a second step, we observed that classifiers based on multiple as well as single EEG features generalize to recordings obtained from different patient cohorts, EEG protocols and different centres. However, the multivariate model always performed best with a predictive AUC of 0.73 for generalization from Paris 1 to Paris 2 datasets, and an AUC of 0.78 from Paris to Liège datasets. Using simulations, we subsequently demonstrate that multivariate pattern classification has a decisive performance advantage over univariate classification as the stability of EEG features decreases, as different EEG configurations are used for feature-extraction or as noise is added. Moreover, we show that the generalization performance from Paris to Liège remains stable even if up to 20% of the diagnostic labels are randomly flipped. Finally, consistent with recent literature, analysis of the learned decision rules of our classifier suggested that markers related to dynamic fluctuations in theta and alpha frequency bands carried independent information and were most influential. Our findings demonstrate that EEG markers of consciousness can be reliably, economically and automatically identified with machine learning in various clinical and acquisition contexts.
确定意识障碍患者的意识状态是一个具有挑战性的实际和理论问题。最近的研究结果表明,从 EEG 中提取的多个脑活动标记物可以反映人类大脑的意识状态。此外,机器学习已被发现可以优化其在临床实践中区分不同意识状态的能力。然而,由于在实践中遇到的不同 EEG 配置、EEG 协议和来自不同中心的亚群导致的信号可变性,这些 EEG 标记物的可靠性尚不清楚。在这项研究中,我们分析了来自两个独立研究中心(巴黎皮提-萨尔佩特里埃和列日)的 327 名意识障碍患者(148 名无反应性觉醒综合征和 179 名最小意识状态)和 66 名健康对照者的记录。我们首先表明,基于决策树集合的非参数分类器在未见数据上提供了稳健的样本外性能,预测曲线下面积(AUC)约为 0.77,仅当使用替代 EEG 配置(不同数量和位置的传感器、Epoch 数量)时,AUC 略有影响,平均 AUC=0.750±0.014)。在第二步中,我们观察到,基于多个和单个 EEG 特征的分类器可以推广到来自不同患者队列、EEG 协议和不同中心的记录。然而,多变量模型始终表现最佳,从巴黎 1 数据集到巴黎 2 数据集的预测 AUC 为 0.73,从巴黎数据集到列日数据集的 AUC 为 0.78。通过模拟,我们随后证明,随着 EEG 特征的稳定性降低,使用不同的 EEG 配置进行特征提取或添加噪声,多变量模式分类具有决定性的性能优势,而单变量分类则具有决定性的性能优势。此外,我们表明,即使将诊断标签的 20%随机翻转,从巴黎到列日的泛化性能仍然稳定。最后,与最近的文献一致,对我们分类器的学习决策规则的分析表明,与 theta 和 alpha 频段的动态波动相关的标记物携带独立的信息,并且最具影响力。我们的研究结果表明,意识的 EEG 标记物可以通过机器学习在各种临床和采集环境中可靠、经济和自动地识别。