Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 , United States.
ACS Sens. 2018 Nov 26;3(11):2237-2245. doi: 10.1021/acssensors.8b00100. Epub 2018 Oct 19.
We present a machine learning (ML) framework to optimize the specificity and speed of liquid crystal (LC)-based chemical sensors. Specifically, we demonstrate that ML techniques can uncover valuable feature information from surface-driven LC orientational transitions triggered by the presence of different gas-phase analytes (and the corresponding optical responses) and can exploit such feature information to train accurate and automatic classifiers. We demonstrate the utility of the framework by designing an experimental LC system that exhibits similar optical responses to a stream of nitrogen containing either 10 ppmv dimethyl-methylphosphonate (DMMP) or 30% relative humidity (RH). The ML framework is used to process and classify thousands of images (optical micrographs) collected during the LC responses and we show that classification (sensing) accuracies of over 99% can be achieved. For the same experimental system, we demonstrate that traditional feature information used in characterizing LC responses (such as average brightness) can only achieve sensing accuracies of 60%. We also find that high accuracies can be achieved by using time snapshots collected early in the LC response, thus providing the ability to create fast sensors. We also show that the ML framework can be used to systematically analyze the quality of information embedded in LC responses and to filter out noise that arises from imperfect LC designs and from sample variations. We evaluate a range of classifiers and feature extraction methods and conclude that linear support vector machines are preferred and that high accuracies can only be achieved by simultaneously exploiting multiple sources of feature information.
我们提出了一个机器学习 (ML) 框架,以优化基于液晶 (LC) 的化学传感器的特异性和速度。具体来说,我们证明了 ML 技术可以从不同气相分析物存在时引发的表面驱动 LC 取向转变中揭示有价值的特征信息(以及相应的光学响应),并且可以利用这种特征信息来训练准确和自动的分类器。我们通过设计一个实验性的 LC 系统来证明该框架的实用性,该系统对含有 10 ppmv 二甲基甲基膦酸酯 (DMMP) 或 30%相对湿度 (RH) 的氮气流表现出类似的光学响应。该 ML 框架用于处理和分类在 LC 响应期间收集的数千张图像(光学显微照片),我们表明可以实现超过 99%的分类(传感)精度。对于相同的实验系统,我们证明了用于表征 LC 响应的传统特征信息(例如平均亮度)只能实现 60%的传感精度。我们还发现,通过使用在 LC 响应早期收集的时间快照,可以实现高精度,从而提供创建快速传感器的能力。我们还表明,该 ML 框架可用于系统地分析 LC 响应中嵌入的信息质量,并从不完善的 LC 设计和样品变化中滤除噪声。我们评估了一系列分类器和特征提取方法,并得出结论,线性支持向量机是首选,并且只有通过同时利用多种特征信息来源才能实现高精度。