Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), University of Lisbon, 1049-001 Lisbon, Portugal.
UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
Sensors (Basel). 2021 Apr 18;21(8):2854. doi: 10.3390/s21082854.
Liquid crystal (LC)-based materials are promising platforms to develop rapid, miniaturised and low-cost gas sensor devices. In hybrid gel films containing LC droplets, characteristic optical texture variations are observed due to orientational transitions of LC molecules in the presence of distinct volatile organic compounds (VOC). Here, we investigate the use of deep convolutional neural networks (CNN) as pattern recognition systems to analyse optical textures dynamics in LC droplets exposed to a set of different VOCs. LC droplets responses to VOCs were video recorded under polarised optical microscopy (POM). CNNs were then used to extract features from the responses and, in separate tasks, to recognise and quantify the vapours exposed to the films. The impact of droplet diameter on the results was also analysed. With our classification models, we show that a single individual droplet can recognise 11 VOCs with small structural and functional differences (F1-score above 93%). The optical texture variation pattern of a droplet also reflects VOC concentration changes, as suggested by applying a regression model to acetone at 0.9-4.0% () (mean absolute errors below 0.25% ()). The CNN-based methodology is thus a promising approach for VOC sensing using responses from individual LC-droplets.
基于液晶 (LC) 的材料是开发快速、微型化和低成本气体传感器设备的有前途的平台。在含有 LC 液滴的混合凝胶膜中,由于 LC 分子在不同挥发性有机化合物 (VOC) 存在下的取向转变,观察到特征光学纹理变化。在这里,我们研究了使用深度卷积神经网络 (CNN) 作为模式识别系统来分析暴露于一组不同 VOC 的 LC 液滴的光学纹理动力学。在偏光显微镜 (POM) 下对 LC 液滴对 VOC 的响应进行视频记录。然后,使用 CNN 从响应中提取特征,并在单独的任务中识别和量化暴露于薄膜的蒸气。还分析了液滴直径对结果的影响。使用我们的分类模型,我们表明单个液滴可以识别具有小结构和功能差异的 11 种 VOC(F1 分数高于 93%)。液滴的光学纹理变化模式也反映了 VOC 浓度的变化,如通过将回归模型应用于 0.9-4.0%() 的丙酮(平均绝对误差低于 0.25%())所示。因此,基于 CNN 的方法是使用单个 LC 液滴的响应进行 VOC 感测的有前途的方法。