Suppr超能文献

雪橇阻力冲刺跑中最大化功率的最佳负荷量

Optimal Loading for Maximizing Power During Sled-Resisted Sprinting.

作者信息

Cross Matt R, Brughelli Matt, Samozino Pierre, Brown Scott R, Morin Jean-Benoit

出版信息

Int J Sports Physiol Perform. 2017 Sep;12(8):1069-1077. doi: 10.1123/ijspp.2016-0362. Epub 2017 Jan 4.

Abstract

PURPOSE

To ascertain whether force-velocity-power relationships could be compiled from a battery of sled-resisted overground sprints and to clarify and compare the optimal loading conditions for maximizing power production for different athlete cohorts.

METHODS

Recreational mixed-sport athletes (n = 12) and sprinters (n = 15) performed multiple trials of maximal sprints unloaded and towing a selection of sled masses (20-120% body mass [BM]). Velocity data were collected by sports radar, and kinetics at peak velocity were quantified using friction coefficients and aerodynamic drag. Individual force-velocity and power-velocity relationships were generated using linear and quadratic relationships, respectively. Mechanical and optimal loading variables were subsequently calculated and test-retest reliability assessed.

RESULTS

Individual force-velocity and power-velocity relationships were accurately fitted with regression models (R > .977, P < .001) and were reliable (ES = 0.05-0.50, ICC = .73-.97, CV = 1.0-5.4%). The normal loading that maximized peak power was 78% ± 6% and 82% ± 8% of BM, representing a resistance of 3.37 and 3.62 N/kg at 4.19 ± 0.19 and 4.90 ± 0.18 m/s (recreational athletes and sprinters, respectively). Optimal force and normal load did not clearly differentiate between cohorts, although sprinters developed greater maximal power (17.2-26.5%, ES = 0.97-2.13, P < .02) at much greater velocities (16.9%, ES = 3.73, P < .001).

CONCLUSIONS

Mechanical relationships can be accurately profiled using common sled-training equipment. Notably, the optimal loading conditions determined in this study (69-96% of BM, dependent on friction conditions) represent much greater resistance than current guidelines (~7-20% of BM). This method has potential value in quantifying individualized training parameters for optimized development of horizontal power.

摘要

目的

确定是否可以从一系列雪橇阻力的地面短跑测试中整理出力量-速度-功率关系,并阐明和比较不同运动员群体最大功率输出的最佳负荷条件。

方法

休闲混合项目运动员(n = 12)和短跑运动员(n = 15)进行了多次无负荷和拖曳一系列不同质量雪橇(20 - 120%体重[BM])的最大短跑测试。速度数据通过运动雷达收集,在峰值速度时的动力学数据使用摩擦系数和空气阻力进行量化。分别使用线性和二次关系生成个体力量-速度和功率-速度关系。随后计算机械和最佳负荷变量,并评估重测信度。

结果

个体力量-速度和功率-速度关系能被回归模型准确拟合(R >.977,P <.001)且具有可靠性(ES = 0.05 - 0.50,ICC =.73 -.97,CV = 1.0 - 5.4%)。使峰值功率最大化的正常负荷为体重的78% ± 6%和82% ± 8%,分别对应在4.19 ± 0.19米/秒和4.90 ± 0.18米/秒时3.37和3.62牛/千克的阻力(分别为休闲运动员和短跑运动员)。尽管短跑运动员在更高速度下(16.9%,ES = 3.73,P <.001)产生了更大的最大功率(17.2 - 26.5%,ES = 0.97 - 2.13,P <.02),但最佳力量和正常负荷在不同群体间并没有明显差异。

结论

使用常见的雪橇训练设备可以准确描绘机械关系。值得注意的是,本研究确定的最佳负荷条件(体重的69 - 96%,取决于摩擦条件)代表的阻力远大于当前指南(约体重的7 - 20%)。该方法在量化个性化训练参数以优化水平功率发展方面具有潜在价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验