Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000, Chambéry, France.
Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
Eur J Appl Physiol. 2018 Mar;118(3):563-571. doi: 10.1007/s00421-017-3796-5. Epub 2018 Jan 4.
We sought to compare force-velocity relationships developed from unloaded sprinting acceleration to that compiled from multiple sled-resisted sprints.
Twenty-seven mixed-code athletes performed six to seven maximal sprints, unloaded and towing a sled (20-120% of body-mass), while measured using a sports radar. Two methods were used to draw force-velocity relationships for each athlete: A multiple trial method compiling kinetic data using pre-determined friction coefficients and aerodynamic drag at maximum velocity from each sprint; and a validated single trial method plotting external force due to acceleration and aerodynamic drag and velocity throughout an acceleration phase of an unloaded sprint (only). Maximal theoretical force, velocity and power were determined from each force-velocity relationship and compared using regression analysis and absolute bias (± 90% confidence intervals), Pearson correlations and typical error of the estimate (TEE).
The average bias between the methods was between - 6.4 and - 0.4%. Power and maximal force showed strong correlations (r = 0.71 to 0.86), but large error (TEE = 0.53 to 0.71). Theoretical maximal velocity was nearly identical between the methods (r = 0.99), with little bias (- 0.04 to 0.00 m s) and error (TEE = 0.12).
When horizontal force or power output is considered for a given speed, resisted sprinting is similar to its associated phase during an unloaded sprint acceleration [e.g. first steps (~ 3 m s) = heavy resistance]. Error associated with increasing loading could be resultant of error, fatigue, or technique, and more research is needed. This research provides a basis for simplified assessment of optimal loading from a single unloaded sprint.
我们旨在比较无负荷冲刺加速过程中得出的力-速度关系与多次雪橇阻力冲刺中得出的力-速度关系。
27 名混合码运动员进行了六到七次最大冲刺,无负荷和拖拉雪橇(20-120%体重),同时使用运动雷达进行测量。为每位运动员绘制力-速度关系使用了两种方法:一种是使用多个试验,根据每个冲刺的最大速度下的预定摩擦系数和空气动力阻力来编译运动力学数据;另一种是经过验证的单次试验,绘制无负荷冲刺加速阶段的外力、空气动力阻力和速度。从每个力-速度关系中确定最大理论力、速度和功率,并使用回归分析和绝对偏差(±90%置信区间)、Pearson 相关系数和估计的典型误差(TEE)进行比较。
两种方法之间的平均偏差在-6.4 至-0.4%之间。功率和最大力之间存在很强的相关性(r=0.71 至 0.86),但误差较大(TEE=0.53 至 0.71)。两种方法之间的理论最大速度几乎相同(r=0.99),偏差较小(-0.04 至 0.00 m s),误差也较小(TEE=0.12)。
当考虑给定速度的水平力或功率输出时,阻力冲刺与无负荷冲刺加速过程中其相关阶段相似[例如,第一步(~3 m s)=重阻力]。与增加负荷相关的误差可能是误差、疲劳或技术的结果,需要进一步研究。本研究为从单次无负荷冲刺中简化评估最佳负荷提供了依据。