Javed Sajid, Mahmood Arif, Al-Maadeed Somaya, Bouwmans Thierry, Jung Soon Ki
IEEE Trans Image Process. 2018 Oct 8. doi: 10.1109/TIP.2018.2874289.
Moving object detection is a fundamental step in various computer vision applications. Robust Principal Component Analysis (RPCA) based methods have often been employed for this task. However, the performance of these methods deteriorates in the presence of dynamic background scenes, camera jitter, camouflaged moving objects, and/or variations in illumination. It is because of an underlying assumption that the elements in the sparse component are mutually independent, and thus the spatiotemporal structure of the moving objects is lost. To address this issue, we propose a spatiotemporal structured sparse RPCA algorithm for moving objects detection, where we impose spatial and temporal regularization on the sparse component in the form of graph Laplacians. Each Laplacian corresponds to a multi-feature graph constructed over superpixels in the input matrix. We enforce the sparse component to act as eigenvectors of the spatial and temporal graph Laplacians while minimizing the RPCA objective function. These constraints incorporate a spatiotemporal subspace structure within the sparse component. Thus, we obtain a novel objective function for separating moving objects in the presence of complex backgrounds. The proposed objective function is solved using a linearized alternating direction method of multipliers based batch optimization. Moreover, we also propose an online optimization algorithm for real-time applications. We evaluated both the batch and online solutions using six publicly available datasets that included most of the aforementioned challenges. Our experiments demonstrated the superior performance of the proposed algorithms compared with the current state-of-the-art methods.
运动目标检测是各种计算机视觉应用中的一个基本步骤。基于鲁棒主成分分析(RPCA)的方法经常被用于此任务。然而,在存在动态背景场景、相机抖动、伪装的运动目标和/或光照变化的情况下,这些方法的性能会下降。这是因为存在一个潜在假设,即稀疏成分中的元素相互独立,因此运动目标的时空结构丢失了。为了解决这个问题,我们提出了一种用于运动目标检测的时空结构化稀疏RPCA算法,其中我们以图拉普拉斯算子的形式对稀疏成分施加空间和时间正则化。每个拉普拉斯算子对应于在输入矩阵的超像素上构建的多特征图。我们在最小化RPCA目标函数的同时,强制稀疏成分充当空间和时间图拉普拉斯算子的特征向量。这些约束在稀疏成分中纳入了时空子空间结构。因此,我们获得了一个用于在复杂背景下分离运动目标的新颖目标函数。所提出的目标函数使用基于线性化交替方向乘子法的批优化来求解。此外,我们还提出了一种用于实时应用的在线优化算法。我们使用六个公开可用的数据集对批处理和在线解决方案进行了评估,这些数据集包含了上述大部分挑战。我们的实验表明,与当前的最先进方法相比,所提出的算法具有卓越的性能。