Green Donald P, Lin Winston, Gerber Claudia
1 Department of Political Science, Columbia University, New York, NY, USA.
2 Department of Statistics and Data Science, Yale University, New Haven, CT, USA.
Eval Rev. 2018 Aug;42(4):391-422. doi: 10.1177/0193841X18799128. Epub 2018 Oct 9.
Many place-based randomized trials and quasi-experiments use a pair of cross-section surveys, rather than panel surveys, to estimate the average treatment effect of an intervention. In these studies, a random sample of individuals in each geographic cluster is selected for a baseline (preintervention) survey, and an independent random sample is selected for an endline (postintervention) survey.
This design raises the question, given a fixed budget, how should a researcher allocate resources between the baseline and endline surveys to maximize the precision of the estimated average treatment effect?
We formalize this allocation problem and show that although the optimal share of interviews allocated to the baseline survey is always less than one-half, it is an increasing function of the total number of interviews per cluster, the cluster-level correlation between the baseline measure and the endline outcome, and the intracluster correlation coefficient. An example using multicountry survey data from Africa illustrates how the optimal allocation formulas can be combined with data to inform decisions at the planning stage. Another example uses data from a digital political advertising experiment in Texas to explore how precision would have varied with alternative allocations.
许多基于地点的随机试验和准实验使用一对横断面调查而非面板调查来估计干预措施的平均治疗效果。在这些研究中,每个地理集群中的个体被随机抽取组成一个样本进行基线(干预前)调查,另一个独立的随机样本被抽取进行终线(干预后)调查。
这种设计引发了一个问题,即在预算固定的情况下,研究人员应如何在基线调查和终线调查之间分配资源,以最大限度地提高估计的平均治疗效果的精度?
我们将这个分配问题形式化,并表明尽管分配给基线调查的访谈的最优比例总是小于二分之一,但它是每个集群访谈总数、基线测量与终线结果之间的集群层面相关性以及集群内相关系数的增函数。一个使用来自非洲的多国调查数据的例子说明了如何将最优分配公式与数据相结合,以便在规划阶段为决策提供信息。另一个例子使用来自德克萨斯州数字政治广告实验的数据,探讨了精度如何随替代分配而变化。