Suppr超能文献

集群随机对照试验中,基线和终线的测量次数不同:样本量和最佳分配。

Cluster randomised trials with different numbers of measurements at baseline and endline: Sample size and optimal allocation.

机构信息

Institute for Clinical Trials Methodology, MRC Clinical Trials Unit at University College London, London, UK.

Centre for Primary Care and Public Health, Queen Mary University of London, London, UK.

出版信息

Clin Trials. 2020 Feb;17(1):69-76. doi: 10.1177/1740774519873888. Epub 2019 Oct 3.

Abstract

BACKGROUND/AIMS: Published methods for sample size calculation for cluster randomised trials with baseline data are inflexible and primarily assume an equal amount of data collected at baseline and endline, that is, before and after the intervention has been implemented in some clusters. We extend these methods to any amount of baseline and endline data. We explain how to explore sample size for a trial if some baseline data from the trial clusters have already been collected as part of a separate study. Where such data aren't available, we show how to choose the proportion of data collection devoted to the baseline within the trial, when a particular cluster size or range of cluster sizes is proposed.

METHODS

We provide a design effect given the cluster size and correlation parameters, assuming different participants are assessed at baseline and endline in the same clusters. We show how to produce plots to identify the impact of varying the amount of baseline data accounting for the inevitable uncertainty in the cluster autocorrelation. We illustrate the methodology using an example trial.

RESULTS

Baseline data provide more power, or allow a greater reduction in trial size, with greater values of the cluster size, intracluster correlation and cluster autocorrelation.

CONCLUSION

Investigators should think carefully before collecting baseline data in a cluster randomised trial if this is at the expense of endline data. In some scenarios, this will increase the sample size required to achieve given power and precision.

摘要

背景/目的:已有发表的针对具有基线数据的群组随机对照试验的样本量计算方法不够灵活,主要假设基线和终线(即干预措施在某些群组中实施前后)的数据量相同。我们将这些方法扩展到任何数量的基线和终线数据。我们解释了如何在试验中探索样本量,如果某些试验群组的基线数据已经作为单独研究的一部分收集。如果没有此类数据,我们将展示如何在提出特定群组大小或群组大小范围时,选择试验中分配给基线的数据比例。

方法

我们提供了设计效果,给定了群组大小和相关参数,假设相同群组中的不同参与者在基线和终线进行评估。我们展示了如何生成图表,以根据群组自相关的不可避免的不确定性,确定不同基线数据量的影响。我们使用一个示例试验来说明该方法。

结果

基线数据提供了更大的功效,或者允许更大的减少试验规模,这与群组大小、组内相关系数和群组自相关系数的增加有关。

结论

如果以终线数据为代价收集群组随机对照试验中的基线数据,调查人员应该慎重考虑。在某些情况下,这将增加达到给定功效和精度所需的样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4840/7334046/4284bb7b04e8/EMS86710-f001.jpg

相似文献

7
Sample size calculation for a stepped wedge trial.阶梯楔形试验的样本量计算
Trials. 2015 Aug 17;16:354. doi: 10.1186/s13063-015-0840-9.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验